Satoshi Muratsugu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4117816/publications.pdf

Version: 2024-02-01

45 papers

1,830 citations

304743 22 h-index 265206 42 g-index

49 all docs 49 docs citations

times ranked

49

2609 citing authors

#	Article	IF	CITATIONS
1	Ceria-Doped Ni/SBA-16 Catalysts for Dry Reforming of Methane. ACS Catalysis, 2013, 3, 1855-1864.	11.2	300
2	A Solid Chelating Ligand: Periodic Mesoporous Organosilica Containing 2,2′-Bipyridine within the Pore Walls. Journal of the American Chemical Society, 2014, 136, 4003-4011.	13.7	166
3	Molecular Adsorbates Switch on Heterogeneous Catalysis: Induction of Reactivity by N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2017, 139, 9144-9147.	13.7	133
4	Tunable Heterogeneous Catalysis: N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous Ru/K-Al ₂ O ₃ Catalysts To Tune Reactivity and Selectivity. Journal of the American Chemical Society, 2016, 138, 10718-10721.	13.7	131
5	Surface Junction Effects on the Electron Conduction of Molecular Wires. Journal of the American Chemical Society, 2010, 132, 4524-4525.	13.7	93
6	Redox-Assisted Ring Closing Reaction of the Photogenerated Cyclophanediene Form of Bis(ferrocenyl)dimethyldihydropyrene with Interferrocene Electronic Communication Switching. Journal of the American Chemical Society, 2008, 130, 7204-7205.	13.7	77
7	Molecularly Imprinted Ru Complex Catalysts Integrated on Oxide Surfaces. Accounts of Chemical Research, 2013, 46, 300-311.	15.6	64
8	Alternative Selective Oxidation Pathways for Aldehyde Oxidation and Alkene Epoxidation on a SiO ₂ -Supported Ruâ^'Monomer Complex Catalyst. Journal of the American Chemical Society, 2010, 132, 713-724.	13.7	62
9	Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Letters, 2020, 61, 151603.	1.4	60
10	Superior Electronâ€Transport Ability of Ï€â€Conjugated Redox Molecular Wires Prepared by the Stepwise Coordination Method on a Surface. Chemistry - an Asian Journal, 2009, 4, 1361-1367.	3.3	58
11	Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO ₃ Nanoperovskite. ACS Applied Materials & Discrete Sump; Interfaces, 2018, 10, 23792-23801.	8.0	50
12	Synthesis of A Pincerâ€Ir ^V Complex with A Baseâ€Free Alumanyl Ligand and Its Application toward the Dehydrogenation of Alkanes. Angewandte Chemie - International Edition, 2019, 58, 15031-15035.	13.8	50
13	Amino Acid-Aided Synthesis of a Hexagonal SrMnO ₃ Nanoperovskite Catalyst for Aerobic Oxidation. ACS Omega, 2017, 2, 1608-1616.	3.5	44
14	Mechanistic Understanding of the Heterogeneous, Rhodium-Cyclic (Alkyl)(Amino)Carbene-Catalyzed (Fluoro-)Arene Hydrogenation. ACS Catalysis, 2020, 10, 6309-6317.	11.2	44
15	Preparation of surface molecularly imprinted Ru-complex catalysts for asymmetric transfer hydrogenation in water media. Dalton Transactions, 2011, 40, 2338-2347.	3.3	42
16	Nâ€Heterocyclic Carbeneâ€Modified Au–Pd Alloy Nanoparticles and Their Application as Biomimetic and Heterogeneous Catalysts. Chemistry - A European Journal, 2018, 24, 18682-18688.	3.3	36
17	Comparative Study of Photochromic Ferroceneâ€Conjugated Dimethyldihydropyrene Derivatives. Chemistry - A European Journal, 2013, 19, 17314-17327.	3.3	34
18	Two-Electron Reduction of a Rhâ^'Moâ^'Rh Dithiolato Complex To Form a Triplet Ground State Associated with a Change in CO Coordination Mode. Journal of the American Chemical Society, 2009, 131, 1388-1389.	13.7	30

#	Article	IF	CITATIONS
19	Preparation and Catalytic Performances of a Molecularly Imprinted Ruâ€Complex Catalyst with an NH ₂ Binding Site on a SiO ₂ Surface. Chemistry - A European Journal, 2012, 18, 1142-1153.	3.3	30
20	Preparation and catalytic performance of a molecularly imprinted Pd complex catalyst for Suzuki cross-coupling reactions. Dalton Transactions, 2017, 46, 3125-3134.	3.3	27
21	A Cyclic Hexanuclear Heterometalladithiolene Cluster [{(Cp*Rh) ₂ Mo(μâ€CO) ₂ (CO)} ₂ (S ₂ C ₆ H _{with Two Ï€â€Conjugated S₂C₆Structure, and Properties, Angewandte Chemie - International Edition, 2009, 48, 3858-3861.}	2S	₂
22	Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19138-19147.	8.0	25
23	Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al ₂ O ₃ surface. Physical Chemistry Chemical Physics, 2015, 17, 24791-24802.	2.8	24
24	Surface-assisted transfer hydrogenation catalysis on a \hat{I}^3 -Al2O3-supported Ir dimer. Physical Chemistry Chemical Physics, 2012, 14, 16023.	2.8	19
25	Normal and inverted redox potentials and structural changes tuned by medium effects in [M2Mo(î·5-C5Me5)2(S2C6H4)2(CO)2] (M: Co, Rh). Chemical Science, 2011, 2, 1960.	7.4	18
26	Chemoselective epoxidation of cholesterol derivatives on a surface-designed molecularly imprinted Ru–porphyrin catalyst. Chemical Communications, 2018, 54, 5114-5117.	4.1	17
27	Perovskite NaCeTi ₂ O ₆ â€6upported Ni Catalysts for CH ₄ Steam Reforming. ChemCatChem, 2012, 4, 1783-1790.	3.7	16
28	Enhanced oxygen reduction reaction performance of size-controlled Pt nanoparticles on polypyrrole-functionalized carbon nanotubes. Dalton Transactions, 2019, 48, 7130-7137.	3.3	16
29	Dispersed Ru nanoclusters transformed from a grafted trinuclear Ru complex on SiO2 for selective alcohol oxidation. Dalton Transactions, 2013, 42, 12611.	3.3	15
30	Rate enhancement of hexose sugar oxidation on an ethynylpyridine-functionalized Pt/Al2O3 catalyst with induced chirality. Chemical Communications, 2013, 49, 7283.	4.1	12
31	Surface Functionalization of Supported Mn Clusters to Produce Robust Mn Catalysts for Selective Epoxidation. ACS Catalysis, 2013, 3, 2020-2030.	11.2	12
32	Oxygen Reduction Reaction Performance Tuning on Pt Nanoparticle/MWCNT Catalysts by Gd Species. Journal of Physical Chemistry C, 2020, 124, 26925-26936.	3.1	12
33	Ï€-Conjugation modification of photochromic and redox-active dimethyldihydropyrene by phenyl- and ethynyl-terpyridines and Ru(bis-terpyridine) complexes. New Journal of Chemistry, 2014, 38, 6114-6124.	2.8	11
34	Size Regulation and Stability Enhancement of Pt Nanoparticle Catalyst via Polypyrrole Functionalization of Carbon-Nanotube-Supported Pt Tetranuclear Complex. Langmuir, 2017, 33, 10271-10282.	3.5	10
35	Synthesis of A Pincerâ€lr ^V Complex with A Baseâ€Free Alumanyl Ligand and Its Application toward the Dehydrogenation of Alkanes. Angewandte Chemie, 2019, 131, 15173-15177.	2.0	10
36	Copper Complexes Bearing a Dianionic Diborane(4) Ligand: Synthesis and Evaluation of the Donor Property. Organometallics, 2020, 39, 500-504.	2.3	10

3

#	Article	IF	CITATIONS
37	Ultrafine Pt–Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis. Dalton Transactions, 2021, 50, 6811-6822.	3.3	10
38	Sulfoxidation on a SiO2-supported Ru complex using O2/aldehyde system. Dalton Transactions, 2012, 41, 4558.	3.3	8
39	Efficient Electronic Communication in 4,9-Bis(ferrocenylethynyl)dimethyldihydropyrene. Chemistry Letters, 2013, 42, 361-362.	1.3	7
40	Reversible low-temperature redox activity and selective oxidation catalysis derived from the concerted activation of multiple metal species on Cr and Rh-incorporated ceria catalysts. Physical Chemistry Chemical Physics, 2019, 21, 20868-20877.	2.8	7
41	Tuning the structure and catalytic activity of Ru nanoparticle catalysts by single 3d transition-metal atoms in Ru ₁₂ –metalloporphyrin precursors. Chemical Communications, 2018, 54, 4842-4845.	4.1	5
42	Chromium Oxides as Structural Modulators of Rhodium Dispersion on Ceria to Generate Active Sites for NO Reduction. ACS Catalysis, 2022, 12, 431-441.	11.2	3
43	Dispersed RhMo Nanoclusters Prepared from Oxide-supported Rh2Mo Heterometallic Complexes as Catalysts for Alcohol Oxidation. Chemistry Letters, 2014, 43, 1321-1323.	1.3	2
44	Designed Surfaces for Active Catalysts. , 2017, , 317-333.		0
45	Creation of Supported Metal Complex, Metal Nanoparticle, and Metal Oxide Catalysts and Operando Synchrotron Radiation X-ray Analyses. Vacuum and Surface Science, 2022, 65, 230-235.	0.1	0