
MarÃ-a J RodrÃ-guez-Yoldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4117356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Squalene Loaded Nanoparticles Effectively Protect Hepatic AML12 Cell Lines against Oxidative and Endoplasmic Reticulum Stress in a TXNDC5-Dependent Way. Antioxidants, 2022, 11, 581.	5.1	11
2	Valorization of Onion Waste by Obtaining Extracts Rich in Phenolic Compounds and Feasibility of Its Therapeutic Use on Colon Cancer. Antioxidants, 2022, 11, 733.	5.1	9
3	Squalene through Its Post-Squalene Metabolites Is a Modulator of Hepatic Transcriptome in Rabbits. International Journal of Molecular Sciences, 2022, 23, 4172.	4.1	3
4	Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants, 2022, 11, 828.	5.1	14
5	Sulfonamide-Derived Dithiocarbamate Gold(I) Complexes Induce the Apoptosis of Colon Cancer Cells by the Activation of Caspase 3 and Redox Imbalance. Biomedicines, 2022, 10, 1437.	3.2	2
6	Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits. Food and Function, 2021, 12, 8141-8153.	4.6	8
7	Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants, 2021, 10, 243.	5.1	27
8	Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants, 2021, 10, 921.	5.1	30
9	Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules, 2021, 11, 977.	4.0	23
10	Valorization of agro-food by-products and their potential therapeutic applications. Food and Bioproducts Processing, 2021, 128, 247-258.	3.6	30
11	Gold(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane Ligands as Thermoresponsive Anticancer Agents in Human Colon Cells. Biomedicines, 2021, 9, 1848.	3.2	7
12	A Combination of Rosa Canina Extracts and Gold Complex Favors Apoptosis of Caco-2 Cells by Increasing Oxidative Stress and Mitochondrial Dysfunction. Antioxidants, 2020, 9, 17.	5.1	9
13	Gold(I) and Silver(I) Complexes with 2-Anilinopyridine-Based Heterocycles as Multitarget Drugs against Colon Cancer. Inorganic Chemistry, 2020, 59, 17732-17745.	4.0	13
14	Dietary Squalene Induces CytochromesCyp2b10andCyp2c55Independently of Sex, Dose, and Diet in Several Mouse Models. Molecular Nutrition and Food Research, 2020, 64, 2000354.	3.3	7
15	Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials, 2020, 10, 1617.	4.1	54
16	Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food and Function, 2020, 11, 2805-2825.	4.6	50
17	A systematic review of the potential uses of pine bark in food industry and health care. Trends in Food Science and Technology, 2019, 88, 558-566.	15.1	50
18	Phenolic Composition of Artichoke Waste and its Antioxidant Capacity on Differentiated Caco-2 Cells. Nutrients, 2019, 11, 1723.	4.1	38

#	Article	IF	CITATIONS
19	Alkynyl Gold(I) complexes derived from 3-hydroxyflavones as multi-targeted drugs against colon cancer. European Journal of Medicinal Chemistry, 2019, 183, 111661.	5.5	33
20	Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers, 2019, 11, 780.	3.7	46
21	Protein Hydrolysates from Fenugreek (Trigonella foenum graecum) as Nutraceutical Molecules in Colon Cancer Treatment . Nutrients, 2019, 11, 724.	4.1	25
22	Fenugreek proteins and their hydrolysates prevent hypercholesterolemia and enhance the HDL antioxidant properties in rats. Nutrition and Food Science, 2018, 48, 973-989.	0.9	6
23	Nutraceutical composition of three pine bark extracts and their antiproliferative effect on Caco-2 cells. Journal of Functional Foods, 2018, 48, 420-429.	3.4	19
24	Proteasome versus Thioredoxin Reductase Competition as Possible Biological Targets in Antitumor Mixed Thiolate-Dithiocarbamate Gold(III) Complexes. Inorganic Chemistry, 2018, 57, 10832-10845.	4.0	33
25	Chemical composition of rosehips from different <i>Rosa</i> species: an alternative source of antioxidants for the food industry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1121-1130.	2.3	30
26	Therapeutic Applications of Rose Hips from Different Rosa Species. International Journal of Molecular Sciences, 2017, 18, 1137.	4.1	110
27	Synthesis of Gold(I) Derivatives Bearing Alkylated 1,3,5â€Triazaâ€7â€phosphaadamantane as Selective Anticancer Metallodrugs. European Journal of Inorganic Chemistry, 2016, 2016, 2791-2803.	2.0	23
28	Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer. PLoS ONE, 2016, 11, e0159136.	2.5	69
29	Involvement of Intracellular Signaling in the ILâ€1β Inhibitory Effect on Fructose Intestinal Absorption. Journal of Cellular Physiology, 2015, 230, 896-902.	4.1	6
30	In Vivo Anticancer Activity, Toxicology and Histopathological Studies of the Thiolate Gold(I) Complex [Au(Spyrimidine)(PTA-CH ₂ Ph)]Br. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 773-782.	1.7	18
31	Gold(I) complexes with alkylated PTA (1,3,5-triaza-7-phosphaadamantane) phosphanes as anticancer metallodrugs. European Journal of Medicinal Chemistry, 2014, 79, 164-172.	5.5	37
32	Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. Journal of Nutritional Biochemistry, 2013, 24, 2100-2109.	4.2	23
33	TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2. Cytokine, 2013, 64, 181-187.	3.2	23
34	<i>S</i> -Propargylthiopyridine Phosphane Derivatives As Anticancer Agents: Characterization and Antitumor Activity. Organometallics, 2013, 32, 3710-3720.	2.3	53
35	Inhibitory Effect of IL-1ß on Galactose Intestinal Absorption in Rabbits. Cellular Physiology and Biochemistry, 2012, 30, 173-186.	1.6	8
36	Lipopolysaccharide Induces Inhibition of Galactose Intestinal Transport in Rabbits <i>in vitro</i> . Cellular Physiology and Biochemistry, 2008, 22, 715-724.	1.6	18

#	Article	IF	CITATIONS
37	Protein kinases, TNF-α, and proteasome contribute in the inhibition of fructose intestinal transport by sepsis in vivo. American Journal of Physiology - Renal Physiology, 2008, 294, G155-G164.	3.4	28