Vahram Haroutunian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/411704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 2016, 19, 1442-1453.	14.8	952
2	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
3	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
4	Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron, 2010, 67, 953-966.	8.1	772
5	White Matter Changes in Schizophrenia. Archives of General Psychiatry, 2003, 60, 443.	12.3	761
6	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	12.6	618
7	Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron, 2018, 99, 64-82.e7.	8.1	558
8	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	30.7	547
9	Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature Neuroscience, 2014, 17, 1164-1170.	14.8	488
10	PGC-1α Expression Decreases in the Alzheimer Disease Brain as a Function of Dementia. Archives of Neurology, 2009, 66, 352-61.	4.5	323
11	The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. Scientific Data, 2018, 5, 180185.	5.3	320
12	Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nature Genetics, 2018, 50, 1584-1592.	21.4	307
13	Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression. Neuron, 2020, 105, 975-991.e7.	8.1	287
14	Regional Distribution of Neuritic Plaques in the Nondemented Elderly and Subjects With Very Mild Alzheimer Disease. Archives of Neurology, 1998, 55, 1185-1191.	4.5	275
15	Epigenome-wide differences in pathology-free regions of multiple sclerosis–affected brains. Nature Neuroscience, 2014, 17, 121-130.	14.8	239
16	Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Medicine, 2016, 8, 104.	8.2	224
17	Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: A gene ontology study. Schizophrenia Research, 2005, 79, 157-173.	2.0	204
18	Myelination, oligodendrocytes, and serious mental illness. Glia, 2014, 62, 1856-1877.	4.9	203

#	Article	IF	CITATIONS
19	Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature Neuroscience, 2022, 25, 213-225.	14.8	202
20	Neurofibrillary Tangles in Nondemented Elderly Subjects and Mild Alzheimer Disease. Archives of Neurology, 1999, 56, 713.	4.5	194
21	Type 2 Diabetes Is Negatively Associated With Alzheimer's Disease Neuropathology. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 471-475.	3.6	172
22	Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiology of Disease, 2006, 21, 531-540.	4.4	172
23	Alzheimer Disease and Related Neurodegenerative Diseases in Elderly Patients With Schizophrenia. Archives of General Psychiatry, 1998, 55, 205.	12.3	168
24	Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Medicine, 2016, 8, 5.	8.2	163
25	Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype. Annals of Neurology, 2000, 48, 297-303.	5.3	157
26	CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Scientific Data, 2019, 6, 180.	5.3	149
27	Increased Neurofibrillary Tangles in Patients With Alzheimer Disease With Comorbid Depression. American Journal of Geriatric Psychiatry, 2008, 16, 168-174.	1.2	147
28	Role of the Neuropathology of Alzheimer Disease in Dementia in the Oldest-Old. Archives of Neurology, 2008, 65, 1211-7.	4.5	142
29	Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology, 2008, 71, 750-757.	1.1	141
30	Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications, 2018, 9, 3121.	12.8	141
31	Elevated DNA methylation across a 48â€kb region spanning the <i>HOXA</i> gene cluster is associated with Alzheimer's disease neuropathology. Alzheimer's and Dementia, 2018, 14, 1580-1588.	0.8	138
32	Molecular subtyping of Alzheimer's disease using RNA sequencing data reveals novel mechanisms and targets. Science Advances, 2021, 7, .	10.3	137
33	FSH blockade improves cognition in mice with Alzheimer's disease. Nature, 2022, 603, 470-476.	27.8	131
34	Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. ELife, 2016, 5, .	6.0	128
35	Dysfunction of the Ubiquitin Proteasome and Ubiquitin-Like Systems in Schizophrenia. Neuropsychopharmacology, 2013, 38, 1910-1920.	5.4	126
36	Variations in differential gene expression patterns across multiple brain regions in schizophrenia. Schizophrenia Research, 2005, 77, 241-252.	2.0	121

#	Article	IF	CITATIONS
37	Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11965-11970.	7.1	111
38	Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron, 2021, 109, 257-272.e14.	8.1	108
39	Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 43.	10.8	104
40	Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 82.	10.8	100
41	Molecular and Genetic Evidence for Abnormalities in the Nodes of Ranvier in Schizophrenia. Archives of General Psychiatry, 2012, 69, 7.	12.3	97
42	A System-Level Transcriptomic Analysis of Schizophrenia Using Postmortem Brain Tissue Samples. Archives of General Psychiatry, 2012, 69, 1205.	12.3	94
43	Multiscale causal networks identify VGF as a key regulator of Alzheimer's disease. Nature Communications, 2020, 11, 3942.	12.8	94
44	Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression. American Journal of Human Genetics, 2017, 100, 885-894.	6.2	91
45	Abnormal Indices of Cell Cycle Activity in Schizophrenia and their Potential Association with Oligodendrocytes. Neuropsychopharmacology, 2008, 33, 2993-3009.	5.4	90
46	Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. International Journal of Neuropsychopharmacology, 2007, 10, 565.	2.1	89
47	Altered Vesicular Glutamate Transporter Expression in the Anterior Cingulate Cortex in Schizophrenia. Biological Psychiatry, 2008, 63, 766-775.	1.3	85
48	Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy. Laboratory Investigation, 2019, 99, 1019-1029.	3.7	79
49	Streamlined alpha-synuclein RT-QuIC assay for various biospecimens in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathologica Communications, 2021, 9, 62.	5.2	79
50	The Human Homolog of the QKI Gene Affected in the Severe Dysmyelination "Quaking―Mouse Phenotype: Downregulated in Multiple Brain Regions in Schizophrenia. American Journal of Psychiatry, 2006, 163, 1834-1837.	7.2	78
51	Tau protein abnormalities associated with the progression of alzheimer disease type dementia. Neurobiology of Aging, 2007, 28, 1-7.	3.1	77
52	Transcriptional vulnerability of brain regions in Alzheimer's disease and dementia. Neurobiology of Aging, 2009, 30, 561-573.	3.1	77
53	Conserved Higher-Order Chromatin Regulates NMDA Receptor Gene Expression and Cognition. Neuron, 2014, 84, 997-1008.	8.1	76
54	mRNA expression of AMPA receptors and AMPA receptor binding proteins in the cerebral cortex of elderly schizophrenics. Journal of Neuroscience Research, 2005, 79, 868-878.	2.9	73

#	Article	IF	CITATIONS
55	A meta-analysis of epigenome-wide association studies in Alzheimer's disease highlights novel differentially methylated loci across cortex. Nature Communications, 2021, 12, 3517.	12.8	72
56	The triggering receptor expressed on myeloid cells 2 (<i>TREM2</i>) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer's dementia. Alzheimer's and Dementia, 2015, 11, 1163-1170.	0.8	70
57	Cortical cholinergic markers in schizophrenia. Schizophrenia Research, 1994, 12, 137-144.	2.0	69
58	Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Human Molecular Genetics, 2017, 26, 1942-1951.	2.9	69
59	Changes in Glycemic Control are Associated with Changes in Cognition in Non-Diabetic Elderly. Journal of Alzheimer's Disease, 2012, 30, 299-309.	2.6	65
60	Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia. Schizophrenia Research, 2010, 120, 150-158.	2.0	64
61	N-Glycosylation of GABAA Receptor Subunits is Altered in Schizophrenia. Neuropsychopharmacology, 2014, 39, 528-537.	5.4	60
62	Attenuation of nucleus basalis of Meynert lesion-induced cholinergic deficits by nerve growth factor. Brain Research, 1989, 487, 200-203.	2.2	56
63	Diabetes Is Associated with Increased Rate of Cognitive Decline in Questionably Demented Elderly. Dementia and Geriatric Cognitive Disorders, 2010, 29, 68-74.	1.5	55
64	Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer's disease at various cognitive stages. Scientific Reports, 2018, 8, 938.	3.3	51
65	Gain in Brain Immunity in the Oldest-Old Differentiates Cognitively Normal from Demented Individuals. PLoS ONE, 2009, 4, e7642.	2.5	50
66	Clutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Translational Psychiatry, 2015, 5, e579-e579.	4.8	49
67	Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain. Acta Neuropathologica, 2017, 133, 353-366.	7.7	47
68	Cycle Checkpoint Abnormalities during Dementia: A Plausible Association with the Loss of Protection against Oxidative Stress in Alzheimer's Disease. PLoS ONE, 2013, 8, e68361.	2.5	46
69	Glutamatergic Gene Expression Is Specifically Reduced in Thalamocortical Projecting Relay Neurons in Schizophrenia. Biological Psychiatry, 2011, 70, 646-654.	1.3	45
70	Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons?. Molecular Psychiatry, 2016, 21, 823-830.	7.9	45
71	Decreased Level of Olfactory Receptors in Blood Cells Following Traumatic Brain Injury and Potential Association with Tauopathy. Journal of Alzheimer's Disease, 2013, 34, 417-429.	2.6	44
72	The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. NPJ Schizophrenia, 2019, 5, 3.	3.6	44

VAHRAM HAROUTUNIAN

#	Article	IF	CITATIONS
73	Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia. Schizophrenia Research, 2014, 154, 1-13.	2.0	43
74	C99 selectively accumulates in vulnerable neurons in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 273-282.	0.8	42
75	Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nature Communications, 2022, 13, 159.	12.8	42
76	MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer's disease pathogenesis. Molecular Psychiatry, 2021, 26, 4687-4701.	7.9	41
77	Progressive Multifocal Leukoencephalopathy in a Patient With Progressive Multiple Sclerosis Treated With Ocrelizumab Monotherapy. JAMA Neurology, 2021, 78, 736.	9.0	40
78	Altered serine/threonine kinase activity in schizophrenia. Brain Research, 2014, 1568, 42-54.	2.2	38
79	Decreased protein S-palmitoylation in dorsolateral prefrontal cortex in schizophrenia. Schizophrenia Research, 2016, 177, 78-87.	2.0	38
80	Is there a neuropathology difference between mild cognitive impairment and dementia?. Dialogues in Clinical Neuroscience, 2009, 11, 171-179.	3.7	38
81	Correlation of the Clinical Severity of Alzheimer's Disease With an Aberration in Mitochondrial DNA (mtDNA). Journal of Molecular Neuroscience, 2001, 16, 41-48.	2.3	37
82	Introduction to the Special Section: Myelin and oligodendrocyte abnormalities in schizophrenia. International Journal of Neuropsychopharmacology, 2007, 10, 499.	2.1	37
83	Abnormal N-acetylglucosaminyltransferase expression in prefrontal cortex in schizophrenia. Schizophrenia Research, 2015, 166, 219-224.	2.0	35
84	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
85	Connectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel Treatments. Molecular Neurobiology, 2019, 56, 4492-4517.	4.0	34
86	Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain. Translational Psychiatry, 2015, 5, e612-e612.	4.8	33
87	Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathologica Communications, 2021, 9, 134.	5.2	32
88	Increased expression of RXRα in dementia: an early harbinger for the cholesterol dyshomeostasis?. Molecular Neurodegeneration, 2010, 5, 36.	10.8	29
89	Sex differences in GABAergic gene expression occur in the anterior cingulate cortex in schizophrenia. Schizophrenia Research, 2015, 167, 57-63.	2.0	29
90	CDT2â€controlled cell cycle reentry regulates the pathogenesis of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 217-231.	0.8	28

6

Vahram Haroutunian

#	Article	IF	CITATIONS
91	Altered NMDA receptor expression in schizophrenia. Molecular Psychiatry, 2006, 11, 705-705.	7.9	25
92	Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nature Neuroscience, 2022, 25, 474-483.	14.8	25
93	Ionotropic glutamate receptor mRNA expression in the human thalamus: Absence of change in schizophrenia. Brain Research, 2008, 1214, 23-34.	2.2	24
94	Altered fucosyltransferase expression in the superior temporal gyrus of elderly patients with schizophrenia. Schizophrenia Research, 2017, 182, 66-73.	2.0	24
95	Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2019, 67, 504-510.	2.3	24
96	Autism Brain Tissue Banking. Brain Pathology, 2007, 17, 412-421.	4.1	23
97	Transmembrane AMPA receptor regulatory protein (TARP) dysregulation in anterior cingulate cortex in schizophrenia. Schizophrenia Research, 2013, 147, 32-38.	2.0	23
98	A brain proteomic signature of incipient Alzheimer's disease in young <i>APOE</i> ε4 carriers identifies novel drug targets. Science Advances, 2021, 7, eabi8178.	10.3	23
99	Interactions of forebrain cholinergic and somatostinergic systems in the rat. Brain Research, 1989, 496, 98-104.	2.2	22
100	Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophrenia Research, 2016, 177, 115-124.	2.0	22
101	Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer's disease and normalized by treatment with anti-diabetic agents. PLoS ONE, 2018, 13, e0206547.	2.5	22
102	Decreased Chloride Channel Expression in the Dorsolateral Prefrontal Cortex in Schizophrenia. PLoS ONE, 2015, 10, e0123158.	2.5	22
103	Alterations of the myristoylated, alanine-rich C kinase substrate (MARCKS) in prefrontal cortex in schizophrenia Research, 2014, 154, 36-41.	2.0	21
104	CR1 and the "Vanishing Amyloid―Hypothesis of Alzheimer's Disease. Biological Psychiatry, 2013, 73, 393-395.	1.3	20
105	Increased G protein-coupled receptor kinase (GRK) expression in the anterior cingulate cortex in schizophrenia. Schizophrenia Research, 2014, 159, 130-135.	2.0	19
106	Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia. Neuropsychopharmacology, 2016, 41, 896-905.	5.4	19
107	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
108	Molecular systems evaluation of oligomerogenic APPE693Q and fibrillogenic APPKM670/671NL/PSEN1Δexon9 mouse models identifies shared features with human Alzheimer's brain molecular pathology. Molecular Psychiatry, 2016, 21, 1099-1111.	7.9	18

VAHRAM HAROUTUNIAN

#	Article	IF	CITATIONS
109	Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia. Translational Psychiatry, 2019, 9, 21.	4.8	16
110	Insulin Receptor Expression and Activity in the Brains of Nondiabetic Sporadic Alzheimer's Disease Cases. International Journal of Alzheimer's Disease, 2012, 2012, 1-12.	2.0	14
111	Non-viability of crossing the Alzheimer mouse model Tg2576 with the type 2 diabetes mouse model ob/ob. Neurobiology of Aging, 2014, 35, e19-e20.	3.1	13
112	Impaired mitochondrial energy metabolism as a novel risk factor for selective onset and progression of dementia in oldest-old subjects. Neuropsychiatric Disease and Treatment, 2015, 11, 565.	2.2	13
113	Whole genome sequencing–based copy number variations reveal novel pathways and targets in Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1846-1867.	0.8	13
114	Neurobiology of glutamatergic abnormalities in schizophrenia. Clinical Neuroscience Research, 2003, 3, 67-76.	0.8	12
115	Transcriptomic Changes Highly Similar to Alzheimer's Disease Are Observed in a Subpopulation of Individuals During Normal Brain Aging. Frontiers in Aging Neuroscience, 2021, 13, 711524.	3.4	12
116	Transcriptional profile of pyramidal neurons in chronic schizophrenia reveals lamina-specific dysfunction of neuronal immunity. Molecular Psychiatry, 2021, 26, 7699-7708.	7.9	11
117	Human apolipoprotein E isoforms are differentially sialylated and the sialic acid moiety in ApoE2 attenuates ApoE2-Al² interaction and Al² fibrillation. Neurobiology of Disease, 2022, 164, 105631.	4.4	11
118	Global Profiling of Lysine Accessibility to Evaluate Protein Structure Changes in Alzheimer's Disease. Journal of the American Society for Mass Spectrometry, 2021, 32, 936-945.	2.8	10
119	Neurofilament subunit protein abnormalities in the thalamus in schizophrenia. Thalamus & Related Systems, 2004, 2, 265.	0.5	8
120	Differential regulation of schizophrenia-associated microRNA gene function by variable number tandem repeats (VNTR) polymorphism. Schizophrenia Research, 2013, 151, 284-286.	2.0	6
121	Comparison of brain connectomes by MRI and genomics and its implication in Alzheimer's disease. BMC Medicine, 2020, 18, 23.	5.5	6
122	Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. Dialogues in Clinical Neuroscience, 2019, 21, 7-19.	3.7	6
123	Engagement of vascular early response genes typifies mild cognitive impairment. Alzheimer's and Dementia, 2022, 18, 1357-1369.	0.8	5
124	Role of cumulative biological risk in mediating socioeconomic disparities in cognitive function in the elderly: a mediation analysis. BMJ Open, 2020, 10, e035847.	1.9	2
125	Cingulum bundle white matter in MAG-knockout mice. Translational Neuroscience, 2010, 1, .	1.4	1
126	[P2–107]: COMBINATION THERAPY OF TYPE 2 DIABETES MEDICATIONS AS A TREATMENT TARGET FOR ALZHEIMER DISEASE. Alzheimer's and Dementia, 2017, 13, P648.	0.8	1

#	Article	IF	CITATIONS
127	Human brain and serum advanced glycation end products are highly correlated: Preliminary results of their role in Alzheimer's disease and type 2 diabetes. Alzheimer's and Dementia, 2020, 16, e045280.	0.8	1
128	Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype. , 2000, 48, 297.		1
129	S3-03-01: Transcriptional vulnerability of brain regions in Alzheimer's disease and dementia. , 2010, 6, S122-S122.		0
130	O4-04-01: Acetylation of tau contributes to tau accumulation and dysfunction. , 2011, 7, S689-S689.		0
131	O3-05-01: Systems-level evidence for epigenetic dysfunction in Alzheimer's disease. , 2015, 11, P228-P228.		0
132	S4â€02â€03: Accelerating Medicines Partnership: Coâ€Expression Networks. Alzheimer's and Dementia, 2016, 12, P322.	0.8	0
133	P2â€607: DEPRESSIVE SYMPTOMS PREDICT COGNITIVE DECLINE IN OLDER ADULTS. Alzheimer's and Dementia, 2018, 14, P972.	0.8	0
134	A consensus proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Alzheimer's and Dementia, 2020, 16, e039504.	0.8	0
135	A clinicopathological correlation study of cognitive status and senile plaques and neurofibrillary tangles in clinically wellâ€characterized individuals of extreme old age. FASEB Journal, 2008, 22, 167.8.	0.5	0
136	MicroRNA-195 rescues AD-associated lysosomal defects. Molecular Psychiatry, 2021, 26, 4563-4563.	7.9	0