
Michael J Wilkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation. Microbiome, 2022, 10, 5.	4.9	9
2	Enhanced Speciation of Pyrogenic Organic Matter from Wildfires Enabled by 21 T FT-ICR Mass Spectrometry. Analytical Chemistry, 2022, 94, 2973-2980.	3.2	22
3	Implications of sample treatment on characterization of riverine dissolved organic matter. Environmental Sciences: Processes and Impacts, 2022, 24, 773-782.	1.7	6
4	Comparative geochemistry of flowback chemistry from the Utica/Point Pleasant and Marcellus formations. Chemical Geology, 2021, 564, 120041.	1.4	11
5	lce Cover Influences Redox Dynamics in Prairie Pothole Wetland Sediments. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006318.	1.3	2
6	Seasonal manganese transport in the hyporheic zone of a snowmelt-dominated river (East River,) Tj ETQq0 0 0 r	gBT/Qverl	ock 10 Tf 50 5
7	Identification of Persistent Sulfidogenic Bacteria in Shale Gas Produced Waters. Frontiers in	1.5	15

7	Microbiology, 2020, 11, 286.	1.5	15
8	A Model Analysis of the Tidal Engine That Drives Nitrogen Cycling in Coastal Riparian Aquifers. Water Resources Research, 2020, 56, e2019WR025662.	1.7	15
9	Ecological Assembly Processes Are Coordinated between Bacterial and Viral Communities in Fractured Shale Ecosystems. MSystems, 2020, 5, .	1.7	15
10	Hyporheic Zone Microbiome Assembly Is Linked to Dynamic Water Mixing Patterns in Snowmeltâ€Dominated Headwater Catchments. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3269-3280.	1.3	25
11	Capability for arsenic mobilization in groundwater is distributed across broad phylogenetic lineages. PLoS ONE, 2019, 14, e0221694.	1.1	15
12	In situ transformation of ethoxylate and glycol surfactants by shale-colonizing microorganisms during hydraulic fracturing. ISME Journal, 2019, 13, 2690-2700.	4.4	18
13	Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing <i>Halanaerobium</i> spp. Applied and Environmental Microbiology, 2019, 85, .	1.4	20
14	Wetland Sediments Host Diverse Microbial Taxa Capable of Cycling Alcohols. Applied and Environmental Microbiology, 2019, 85, .	1.4	10
15	Genome-Resolved Metagenomics Extends the Environmental Distribution of the <i>Verrucomicrobia</i> Phylum to the Deep Terrestrial Subsurface. MSphere, 2019, 4, .	1.3	38
16	Heterogeneity in Hyporheic Flow, Pore Water Chemistry, and Microbial Community Composition in an Alpine Streambed. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3465-3478.	1.3	41
17	Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nature Microbiology, 2019, 4, 352-361.	5.9	78
18	Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications, 2018, 9, 585.	5.8	110

MICHAEL J WILKINS

#	Article	IF	CITATIONS
19	Comparative genomics and physiology of the genus <i>Methanohalophilus</i> , a prevalent methanogen in hydraulically fractured shale. Environmental Microbiology, 2018, 20, 4596-4611.	1.8	28
20	Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin. Frontiers in Microbiology, 2018, 9, 2646.	1.5	33
21	Characterizing the Deep Terrestrial Subsurface Microbiome. Methods in Molecular Biology, 2018, 1849, 1-15.	0.4	4
22	Microbial Community Cohesion Mediates Community Turnover in Unperturbed Aquifers. MSystems, 2018, 3, .	1.7	63
23	Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6585-E6594.	3.3	69
24	Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome, 2018, 6, 138.	4.9	63
25	Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Clobal Change Biology, 2017, 23, 3107-3120.	4.2	64
26	Water Table Dynamics and Biogeochemical Cycling in a Shallow, Variably-Saturated Floodplain. Environmental Science & Technology, 2017, 51, 3307-3317.	4.6	100
27	Anoxia stimulates microbially catalyzed metal release from Animas River sediments. Environmental Sciences: Processes and Impacts, 2017, 19, 578-585.	1.7	14
28	Draft Genome Sequences of Multiple <i>Frackibacter</i> Strains Isolated from Hydraulically Fractured Shale Environments. Genome Announcements, 2017, 5, .	0.8	11
29	Sulfide Generation by Dominant <i>Halanaerobium</i> Microorganisms in Hydraulically Fractured Shales. MSphere, 2017, 2, .	1.3	62
30	Members of the Candidate Phyla Radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities. Microbiome, 2017, 5, 112.	4.9	118
31	Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and Geochemical Behaviors across a Shallow Riparian Aquifer. Frontiers in Earth Science, 2016, 4, .	0.8	24
32	RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria. ISME Journal, 2016, 10, 2702-2714.	4.4	98
33	Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments. Journal of Geophysical Research C: Biogeosciences, 2016, 121, 2976-2987.	1.3	49
34	Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications, 2016, 7, 11237.	5.8	290
35	Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 2016, 7, 13219.	5.8	994
36	Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nature Microbiology, 2016, 1, 16146.	5.9	207

MICHAEL J WILKINS

#	Article	IF	CITATIONS
37	Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environmental Microbiology, 2016, 18, 159-173.	1.8	164
38	Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling. Current Biology, 2015, 25, 690-701.	1.8	522
39	Unusual biology across a group comprising more than 15% of domain Bacteria. Nature, 2015, 523, 208-211.	13.7	1,050
40	Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points. Environmental Microbiology, 2015, 17, 622-636.	1.8	32
41	CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough. Frontiers in Microbiology, 2014, 5, 507.	1.5	31
42	Trends and future challenges in sampling the deep terrestrial biosphere. Frontiers in Microbiology, 2014, 5, 481.	1.5	35
43	Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME Journal, 2014, 8, 1452-1463.	4.4	170
44	Characterization and transcription of arsenic respiration and resistance genes during <i>in situ</i> uranium bioremediation. ISME Journal, 2013, 7, 370-383.	4.4	80
45	Molecular Analysis of the <i>In Situ</i> Growth Rates of Subsurface Geobacter Species. Applied and Environmental Microbiology, 2013, 79, 1646-1653.	1.4	35
46	Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla. Science, 2012, 337, 1661-1665.	6.0	637
47	Acetate Availability and its Influence on Sustainable Bioremediation of Uranium-Contaminated Groundwater. Geomicrobiology Journal, 2011, 28, 519-539.	1.0	222
48	Proteogenomic Monitoring of <i>Geobacter</i> Physiology during Stimulated Uranium Bioremediation. Applied and Environmental Microbiology, 2009, 75, 6591-6599.	1.4	136