
Antonietta Capotondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Optimal Precursor of Northeast Pacific Marine Heatwaves and Central Pacific El Niño Events. Geophysical Research Letters, 2022, 49, .	1.5	20
2	Subtropical-tropical pathways of spiciness anomalies and their impact on equatorial Pacific temperature. Climate Dynamics, 2021, 56, 1131-1144.	1.7	11
3	Are Long-Term Changes in Mixed Layer Depth Influencing North Pacific Marine Heatwaves?. Bulletin of the American Meteorological Society, 2021, 102, S59-S66.	1.7	32
4	Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment, 2021, 2, 340-357.	12.2	85
5	The role of interannual ENSO events in decadal timescale transitions of the Interdecadal Pacific Oscillation. Climate Dynamics, 2021, 57, 1933-1951.	1.7	16
6	Removing the Effects of Tropical Dynamics from North Pacific Climate Variability. Journal of Climate, 2021, , 1-49.	1.2	10
7	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	12.2	197
8	The influence of pacific winds on ENSO diversity. Scientific Reports, 2021, 11, 18672.	1.6	17
9	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	6.0	92
10	The Continuum of Northeast Pacific Marine Heatwaves and Their Relationship to the Tropical Pacific. Geophysical Research Letters, 2021, 48, 2020GL090661.	1.5	15
11	ENSO diversity shows robust decadal variations that must be captured for accurate future projections. Communications Earth & Environment, 2021, 2, .	2.6	19
12	Change in strong Eastern Pacific El Niño events dynamics in the warming climate. Climate Dynamics, 2020, 54, 901-918.	1.7	19
13	Enhanced El Niño–Southern Oscillation Variability in Recent Decades. Geophysical Research Letters, 2020, 47, e2019GL083906.	1.5	85
14	ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002022.	1.3	52
15	How Does El Niño–Southern Oscillation Change Under Global Warming—A First Look at CMIP6. Geophysical Research Letters, 2020, 47, e2020GL090640.	1.5	72
16	Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 2020, 183, 102307.	1.5	61
17	Predictability of US West Coast Ocean Temperatures is not solely due to ENSO. Scientific Reports, 2019, 9, 10993.	1.6	38
18	Composite physical–biological El Niño and La Niña conditions in the California Current System in CESM1-POP2-BEC. Ocean Modelling, 2019, 142, 101439.	1.0	5

Antonietta Capotondi

#	Article	IF	CITATIONS
19	Observational Needs Supporting Marine Ecosystems Modeling and Forecasting: From the Global Ocean to Regional and Coastal Systems. Frontiers in Marine Science, 2019, 6, .	1.2	32
20	Forced changes to twentieth century ENSO diversity in a last Millennium context. Climate Dynamics, 2019, 52, 7359-7374.	1.7	19
21	Linear or Nonlinear Modeling for ENSO Dynamics?. Atmosphere, 2018, 9, 435.	1.0	6
22	Estimate of the average timing for strong El Niño events using the recharge oscillator model with a multiplicative perturbation. Chaos, 2018, 28, 103118.	1.0	5
23	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	13.7	702
24	The Nature of the Stochastic Wind Forcing of ENSO. Journal of Climate, 2018, 31, 8081-8099.	1.2	35
25	Is El Niño <i>really</i> changing?. Geophysical Research Letters, 2017, 44, 8548-8556.	1.5	60
26	Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate*. Journal of Climate, 2015, 28, 9997-10013.	1.2	48
27	Optimal precursors of different types of ENSO events. Geophysical Research Letters, 2015, 42, 9952-9960.	1.5	83
28	Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 2015, 96, 921-938.	1.7	745
29	Extreme La Niña events to increase. Nature Climate Change, 2015, 5, 100-101.	8.1	20
30	ENSO diversity in the NCAR CCSM4 climate model. Journal of Geophysical Research: Oceans, 2013, 118, 4755-4770.	1.0	89
31	Enhanced upper ocean stratification with climate change in the CMIP3 models. Journal of Geophysical Research, 2012, 117, .	3.3	234
32	ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4. Journal of Climate, 2012, 25, 2622-2651.	1.2	293
33	El Niño–Southern Oscillation ocean dynamics: Simulation by coupled general circulation models. Geophysical Monograph Series, 2010, , 105-122.	0.1	7
34	Understanding El Niño in Ocean–Atmosphere General Circulation Models: Progress and Challenges. Bulletin of the American Meteorological Society, 2009, 90, 325-340.	1.7	455
35	Lowâ€frequency variability in the Gulf of Alaska from coarse and eddyâ€permitting ocean models. Journal of Geophysical Research, 2009, 114, .	3.3	6
36	Can the mean structure of the tropical pycnocline affect ENSO period in coupled climate models?. Ocean Modelling, 2008, 20, 157-169.	1.0	4

ANTONIETTA CAPOTONDI

#	Article	IF	CITATIONS
37	Bottom-up forcing and the decline of Steller sea lions (Eumetopias jubatus) in Alaska: assessing the ocean climate hypothesis. Fisheries Oceanography, 2007, 16, 46-67.	0.9	118
38	Spatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modelling, 2006, 15, 274-298.	1.0	162
39	Extratropical Atmosphere–Ocean Variability in CCSM3. Journal of Climate, 2006, 19, 2496-2525.	1.2	50
40	Tropical Pacific and Atlantic Climate Variability in CCSM3. Journal of Climate, 2006, 19, 2451-2481.	1.2	139
41	Low-Frequency Pycnocline Variability in the Northeast Pacific. Journal of Physical Oceanography, 2005, 35, 1403-1420.	0.7	33
42	Anatomy and Decadal Evolution of the Pacific Subtropical–Tropical Cells (STCs)*. Journal of Climate, 2005, 18, 3739-3758.	1.2	63
43	Interdecadal changes in mesoscale eddy variance in the Gulf of Alaska circulation: Possible implications for the Steller sea lion decline. Atmosphere - Ocean, 2005, 43, 231-240.	0.6	20
44	Why Are There Rossby Wave Maxima in the Pacific at 10°S and 13°N?. Journal of Physical Oceanography, 2003, 33, 1549-1563.	0.7	52
45	Rossby Waves in the Tropical North Pacific and Their Role in Decadal Thermocline Variability. Journal of Physical Oceanography, 2001, 31, 3496-3515.	0.7	68