Bin Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116462/publications.pdf

Version: 2024-02-01

53794 79698 8,053 258 45 73 citations h-index g-index papers 259 259 259 3719 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Current research progress in grain refinement of cast magnesium alloys: A review article. Journal of Alloys and Compounds, 2015, 619, 639-651.	5.5	419
2	Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corrosion Science, 2018, 139, 370-382.	6.6	271
3	Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 2016, 93, 63-70.	5.9	260
4	High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere, 2016, 152, 415-422.	8.2	252
5	Hot Deformation Behavior and Microstructural Evolution of Twin-Roll-Casting Mg Alloy during High-Temperature Compression. Advances in Materials Science and Engineering, 2019, 2019, 1-7.	1.8	207
6	Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 32-48.	4.9	169
7	Superhydrophobic coatings for corrosion protection of magnesium alloys. Journal of Materials Science and Technology, 2020, 52, 100-118.	10.7	164
8	Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corrosion Science, 2017, 126, 374-380.	6.6	158
9	Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt. Acta Materialia, 2010, 58, 6526-6534.	7.9	122
10	A review on hot tearing of magnesium alloys. Journal of Magnesium and Alloys, 2016, 4, 151-172.	11.9	104
11	An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts. Nanoscale Research Letters, 2016, 11, 329.	5.7	99
12	Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 33-38.	5.6	95
13	Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Applied Surface Science, 2019, 475, 847-856.	6.1	94
14	Microstructure and corrosion behavior of Mg-Sc binary alloys in 3.5 wt.% NaCl solution. Corrosion Science, 2020, 174, 108831.	6.6	90
15	Influence of the Al2Ca phase on microstructure and mechanical properties of Mg–Al–Ca alloys. Journal of Alloys and Compounds, 2015, 647, 357-363.	5.5	87
16	Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries. Journal of Materials Science and Technology, 2021, 62, 128-138.	10.7	87
17	Effects of Surface Terminations of 2D Bi ₂ WO ₆ on Photocatalytic Hydrogen Evolution from Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 20067-20074.	8.0	78
18	Effects of Zn addition on the mechanical properties and texture of extruded Mg-Zn-Ca-Ce magnesium alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 46-54.	5.6	74

#	Article	IF	Citations
19	Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet. Corrosion Science, 2017, 119, 14-22.	6.6	71
20	Understanding solid solution strengthening at elevated temperatures in a creep-resistant Mg–Gd–Ca alloy. Acta Materialia, 2019, 181, 185-199.	7.9	71
21	An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 85-97.	5.6	70
22	Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy. Materials Chemistry and Physics, 2012, 133, 611-616.	4.0	69
23	Calculation of Schmid factor in Mg alloys: Influence of stress state. Scripta Materialia, 2019, 171, 31-35.	5.2	68
24	A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets. Materials Letters, 2013, 100, 29-31.	2.6	66
25	Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio. Materials & Design, 2014, 57, 121-127.	5.1	66
26	High temperature oxidation behavior of Mg-Y-Sn, Mg-Y, Mg-Sn alloys and its effect on corrosion property. Applied Surface Science, 2015, 353, 1013-1022.	6.1	66
27	Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: a review. Journal of Materials Science, 2021, 56, 12965.	3.7	64
28	Highly Sensitive Nonenzymatic Glucose Sensor Based on 3D Ultrathin NiFe Layered Double Hydroxide Nanosheets. Electroanalysis, 2017, 29, 1755-1761.	2.9	63
29	Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Sn-Zn alloy through Ca addition. Journal of Alloys and Compounds, 2019, 782, 1076-1086.	5.5	62
30	Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts. Materials, 2018, 11, 206.	2.9	61
31	Formation of the elliptical texture and its effect on the mechanical properties and stretch formability of dilute Mg-Sn-Y sheet by Zn addition. Materials Science & Droperties, Microstructural Materials: Properties, Microstructure and Processing, 2019, 746, 259-275.	5.6	60
32	Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy. Journal of Materials Science and Technology, 2020, 37, 26-37.	10.7	58
33	The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet. Journal of Magnesium and Alloys, 2022, 10, 411-422.	11.9	58
34	Improved corrosion resistance of AZ31 Mg alloy coated with MXenes/MgAl-LDHs composite layer modified with yttrium. Electrochimica Acta, 2021, 374, 137913.	5.2	58
35	Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets. Journal of Magnesium and Alloys, 2019, 7, 545-554.	11.9	57
36	Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding. Journal of Alloys and Compounds, 2018, 745, 599-608.	5.5	56

#	Article	IF	CITATIONS
37	The influence of CaO addition on grain refinement of cast magnesium alloys. Scripta Materialia, 2016, 114, 103-107.	5.2	54
38	A new approach to grain refinement of an Mg–Li–Al cast alloy. Journal of Alloys and Compounds, 2010, 492, 95-98.	5 . 5	52
39	Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy. Journal of Materials Science and Technology, 2020, 43, 104-118.	10.7	51
40	Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity. International Journal of Plasticity, 2020, 133, 102806.	8.8	50
41	Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31. Journal of Materials Science and Technology, 2021, 64, 10-20.	10.7	50
42	Influence of an asymmetric shear deformation on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 440-447.	5.6	49
43	An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 339-345.	5.6	48
44	Effect of Li content on microstructure, texture and mechanical behaviors of the as-extruded Mg-Li sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 59-65.	5.6	48
45	Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength. Journal of Materials Science and Technology, 2022, 103, 186-196.	10.7	48
46	Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 187-191.	5.6	47
47	A micro-alloyed Mg-Sn-Y alloy with high ductility at room temperature. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 131-144.	5.6	47
48	Ameliorating the mechanical properties of magnesium alloy: Role of texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 395-403.	5.6	46
49	Effects of Fe concentration on microstructure and corrosion of Mg-6Al-1Zn-xFe alloys for fracturing balls applications. Journal of Materials Science and Technology, 2019, 35, 2086-2098.	10.7	44
50	Improved mechanical properties of Mg-3Al-1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution. Journal of Alloys and Compounds, 2018, 762, 719-729.	5 . 5	43
51	Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys. Journal of Alloys and Compounds, 2020, 849, 156619.	5. 5	43
52	Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31. Journal of Alloys and Compounds, 2020, 823, 153844.	5.5	43
53	Combined influence of Be and Ca on improving the high-temperature oxidation resistance of the magnesium alloy Mg-9Al-1Zn. Corrosion Science, 2017, 122, 1-11.	6.6	42
54	Effect of effective strain gradient on texture and mechanical properties of Mg–3Al–1Zn alloy sheets produced by asymmetric extrusion. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 172-180.	5.6	42

#	Article	IF	CITATIONS
55	Tailoring the textures and mechanical properties of AZ31 alloy sheets using asymmetric composite extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 606-615.	5.6	40
56	The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys. Applied Surface Science, 2016, 370, 357-363.	6.1	40
57	Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet. Journal of Alloys and Compounds, 2017, 723, 213-224.	5.5	40
58	Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg–Y–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138735.	5.6	40
59	Effect of Nd addition on the microstructure and mechanical properties of extruded Mg-Gd-Zr alloy. Materials Science & Description of the Materials: Properties, Microstructure and Processing, 2021, 816, 141320.	5.6	40
60	Effect of Mg24Y5 intermetallic particles on grain refinement of Mg-9Li alloy. Intermetallics, 2014, 45, 18-23.	3.9	39
61	Diffusion Kinetics in Mg-Cu Binary System. Journal of Phase Equilibria and Diffusion, 2015, 36, 613-619.	1.4	39
62	Effect of Al content on microstructure and mechanical properties of as-cast Mg-5Nd alloys. Journal of Alloys and Compounds, 2018, 737, 263-270.	5.5	39
63	A good balance between ductility and stretch formability of dilute Mg-Sn-Y sheet at room temperature. Materials Science & Digneering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 404-416.	5.6	39
64	Role of Al modification on the microstructure and mechanical properties of as-cast Mg–6Ce alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 57-64.	5.6	38
65	Oxidation resistance of Mg–9Al–1Zn alloys micro-alloyed with Be. Scripta Materialia, 2016, 115, 38-41.	5.2	38
66	Influence of stress state on microstructure evolution of AZ31 Mg alloy rolled sheet during deformation at room temperature. Materials Science & Department of Structural Materials: Properties, Microstructure and Processing, 2018, 715, 379-388.	5.6	37
67	Influence of Zn addition on the microstructure, tensile properties and work-hardening behavior of Mg-1Gd alloy. Materials Science & Degramory: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138779.	5.6	37
68	Tribological properties of carbon nanotube/SiO2 combinations as water-based lubricant additives for magnesium alloy. Journal of Materials Research and Technology, 2021, 12, 138-149.	5.8	37
69	Influence of different extrusion processes on mechanical properties of magnesium alloy. Journal of Magnesium and Alloys, 2014, 2, 220-224.	11.9	36
70	Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg-1.0Sn alloy sheet. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 82-93.	5.6	35
71	Microstructure and mechanical behavior of the Mg–Mn–Ce magnesium alloy sheets. Journal of Magnesium and Alloys, 2014, 2, 8-12.	11.9	34
72	Effect of rolling paths and pass reductions on the microstructure and texture evolutions of AZ31 sheet with an initial asymmetrical texture distribution. Journal of Alloys and Compounds, 2019, 786, 394-408.	5 . 5	34

#	Article	IF	Citations
73	Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Materialia, 2021, 214, 117005.	7.9	34
74	Strain path dependence of texture and property evolutions on rolled Mg-Li-Al-Zn alloy possessed of an asymmetric texture. Journal of Alloys and Compounds, 2017, 698, 771-785.	5.5	33
75	Improving the room-temperature formability of Mg-3Al-1Zn alloy sheet by introducing an orthogonal four-peak texture. Journal of Alloys and Compounds, 2019, 797, 443-455.	5.5	33
76	Grain refinement mechanism and improved mechanical properties in Mg–Sn alloy with trace Y addition. Journal of Alloys and Compounds, 2020, 820, 153122.	5.5	33
77	Novel Mg-Bi-Mn wrought alloys: The effects of extrusion temperature and Mn addition on their microstructures and mechanical properties. Journal of Magnesium and Alloys, 2022, 10, 2588-2606.	11.9	33
78	Unusual texture formation in Mg–3Al–1Zn alloy sheets processed by slope extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 1-5.	5.6	32
79	Role of Al content on the microstructure, texture and mechanical properties of Mg-3.5Ca based alloys. Materials Science & Degree and Processing, 2018, 730, 303-316.	5.6	32
80	Effect of Li content on microstructure, texture and mechanical properties of cold rolled Mg–3Al–1Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 631, 189-195.	5.6	31
81	Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60†wt†ppm Be attributed to the formation of a more protective (Mg,Be)O surface oxide. Corrosion Science, 2018, 132, 272-283.	6.6	31
82	Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition. Journal of Alloys and Compounds, 2018, 764, 555-564.	5.5	31
83	Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of as-extruded AM60 and AZ31 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 479-489.	5.6	31
84	Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be. Corrosion Science, 2019, 147, 357-371.	6.6	30
85	Intercalation of Y in Mg-Al layered double hydroxide films on anodized AZ31 and Mg-Y alloys to influence corrosion protective performance. Applied Surface Science, 2021, 551, 149432.	6.1	30
86	Effect of Ca addition on grain refinement of Mg–9Li–1Al alloy. Journal of Magnesium and Alloys, 2013, 1, 297-302.	11.9	29
87	Influence of Ca and Zn synergistic alloying on the microstructure, tensile properties and strain hardening of Mg-1Gd alloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139344.	5.6	29
88	Understanding the enhanced ductility of Mg-Gd with Ca and Zn microalloying by slip trace analysis. Journal of Materials Science and Technology, 2021, 95, 20-28.	10.7	29
89	The influence of Gd on the recrystallisation, texture and mechanical properties of Mg alloy. Materials Science & Sci	5.6	29
90	Enhanced stretch formability at room temperature for Mg-Al-Zn/Mg-Y laminated composite via porthole die extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 184-194.	5.6	28

#	Article	IF	Citations
91	Improving mechanical properties of heterogeneous Mg-Gd alloy laminate via accumulated extrusion bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139324.	5.6	28
92	Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy. Journal of Materials Science and Technology, 2022, 130, 12-26.	10.7	28
93	Evolution of microstructure and mechanical properties of Mg–Mn–Ce alloys under hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 143-148.	5.6	27
94	Effect of Al2Ca intermetallic compound addition on grain refinement of AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 1284-1293.	4.2	27
95	Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures. Journal of Alloys and Compounds, 2016, 687, 252-262.	5.5	27
96	Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 174-185.	5.6	27
97	Improving performance of friction stir welded AZ31/AM60 dissimilar joint by adjusting texture distribution and microstructure. Materials Science & Description and microstructure. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2020, 778, 139088.	5.6	27
98	The oxidation behavior of Mg-Er binary alloys at 500Ââ"f. Corrosion Science, 2022, 195, 109961.	6.6	27
99	Tailoring microstructure and texture of Mg–3Al–1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy. Journal of Materials Science and Technology, 2022, 113, 48-60.	10.7	27
100	Oxidation resistance of Mg-Y alloys at elevated temperatures and the protection performance of the oxide films. Journal of Alloys and Compounds, 2018, 749, 1054-1062.	5.5	26
101	A study of the corrosion behavior of AZ31 Mg alloy in depth direction after surface nanocrystallization. Surface and Coatings Technology, 2020, 396, 125968.	4.8	26
102	Influence of Zn on the microstructure and mechanical properties of Mg-Gd-Zr alloy. Materials Science & Science & Properties, Microstructure and Processing, 2022, 843, 143136.	5.6	26
103	Recent advances in micro-alloyed wrought magnesium alloys: Theory and design. Transactions of Nonferrous Metals Society of China, 2022, 32, 1741-1780.	4.2	26
104	Effect of Li content on microstructure and mechanical property of Mgâ^xLiâ^3(Alâ^Si) alloys. Transactions of Nonferrous Metals Society of China, 2019, 29, 2506-2513.	4.2	25
105	Enhanced formability of a magnesium alloy sheet via in-plane pre-strain paths. Journal of Alloys and Compounds, 2020, 814, 152278.	5.5	25
106	Microstructure evolution and mechanical properties of the Mg-Sm-Gd-Zn-Zr alloy during extrusion. Journal of Materials Research and Technology, 2021, 15, 2518-2528.	5.8	25
107	Effect of Sr on microstructure and aging behavior of Mg–14Li alloys. Progress in Natural Science: Materials International, 2012, 22, 160-168.	4.4	24
108	Influence of pre-hardening on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet. Journal of Alloys and Compounds, 2015, 621, 301-306.	5.5	24

#	Article	IF	CITATIONS
109	Improved the anisotropy of extruded Mg 3Li 3Al Zn alloy sheet by presetting grain re-orientation and subsequent annealing. Journal of Alloys and Compounds, 2016, 676, 64-73.	5 . 5	24
110	Enhanced strength and ductility AZ91 alloy with heterogeneous lamella structure prepared by pre-aging and low-temperature extrusion. Materials Science & Diplomaterials Science & Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141094.	5 . 6	24
111	Effects of Sn on microstructure of as-cast and as-extruded Mg–9Li alloys. Transactions of Nonferrous Metals Society of China, 2013, 23, 904-908.	4.2	23
112	Effect of Cu addition on the microstructure, mechanical properties and degradation rate of Mg-2Gd alloy. Journal of Materials Research and Technology, 2021, 15, 477-487.	5.8	23
113	Enhancement of Corrosion Resistance and Discharge Performance of Mg–5Li–3Al–1Zn Sheet for Mg-air Battery via Rolling. Journal of the Electrochemical Society, 2020, 167, 110529.	2.9	23
114	Twin-roll strip casting of magnesium alloys in China. Transactions of Nonferrous Metals Society of China, 2008, 18, s7-s11.	4.2	22
115	Effects of combined additions of Li and Al–5Ti–1B on the mechanical anisotropy of AZ31 magnesium alloy. Materials & Design, 2013, 46, 922-927.	5.1	22
116	Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts. Nanomaterials, 2017, 7, 154.	4.1	22
117	Effect of precompression and subsequent annealing on the texture evolution and bendability of Mg–Gd binary alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140290.	5.6	22
118	Optimization in strength-ductility of heterogeneous Mg-13Gd alloy via small extrusion ratio combined with pre-aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142540.	5.6	22
119	Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling. Progress in Natural Science: Materials International, 2019, 29, 231-236.	4.4	21
120	Effect of pass reduction on distribution of shear bands and mechanical properties of AZ31B alloy sheets prepared by on-line heating rolling. Journal of Materials Processing Technology, 2020, 280, 116611.	6.3	21
121	Tuning the Active Sites of Atomically Thin Defective Bi ₁₂ O ₁₇ Cl ₂ via Incorporation of Subnanometer Clusters. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9216-9223.	8.0	21
122	Effects of yttrium and strontium additions on as-cast microstructure of Mg-14Li-1Al alloys. Transactions of Nonferrous Metals Society of China, 2011, 21, 778-783.	4.2	20
123	The Corrosion Behavior of AZ91D Magnesium Alloy in Simulated Haze Aqueous Solution. Materials, 2018, 11, 970.	2.9	20
124	Optimizing the mechanical properties of friction stir welded dissimilar joint of AM60 and AZ31 alloys by controlling deformation behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138839.	5 . 6	20
125	The high-temperature oxidation resistance properties of magnesium alloys alloyed with Gd and Ca. Journal of Materials Science, 2021, 56, 8745-8761.	3.7	20
126	The formation of intermetallic compounds during interdiffusion of Mg–Al/Mg–Ce diffusion couples. Journal of Alloys and Compounds, 2015, 619, 411-416.	5.5	19

#	Article	IF	CITATIONS
127	Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion. Materials Science & Degraphics A: Structural Materials: Properties, Microstructure and Processing, 2020, 769, 138476.	5.6	19
128	Reduction per pass effect on texture traits and mechanical anisotropy of Mg–Al–Zn–Mn–Ca alloy subjected to unidirectional and cross rolling. Journal of Materials Research and Technology, 2020, 9, 9607-9619.	5.8	19
129	Microstructure and mechanical properties with various pre-treatment and Zn content in Mg-Gd-Y-Zn alloys. Journal of Alloys and Compounds, 2020, 831, 154873.	5.5	19
130	Effect of tension on edge crack of on-line heating rolled AZ31B magnesium alloy sheet. Journal of Materials Research and Technology, 2020, 9, 1988-1997.	5.8	18
131	Effects of Grain Size on the Corrosion and Discharge Behaviors of Mg–Y Binary Alloys for Mg-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 130515.	2.9	18
132	Exploiting an as-extruded fine-grained Mg-Bi-Mn alloy with strength-ductility synergy via dilute Zn addition. Journal of Alloys and Compounds, 2022, 924, 166337.	5.5	18
133	Twin nucleation, twin growth and their effects on annealing strengths of Mg–Al–Zn–Mn sheets experienced different pre-compressive strains. Journal of Alloys and Compounds, 2020, 815, 152310.	5.5	17
134	Microstructure and mechanical properties of 1060/7050 laminated composite produced via cross accumulative extrusion bonding and subsequent aging. Journal of Alloys and Compounds, 2020, 826, 154094.	5.5	17
135	Improvement of planar isotropy, mechanical properties and corrosion resistance of extruded Mg-3Al-1Zn alloy sheet by special grain re-orientation. Journal of Alloys and Compounds, 2017, 721, 106-117.	5.5	17
136	Effect of Gd content on the microstructure, texture and mechanical properties of Mg-xGd-0.5Mn alloys. Journal of Materials Research and Technology, 2022, 20, 343-358.	5.8	17
137	Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion. Materials Science & Science & Processing A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 76-81.	5.6	16
138	Study on mechanical behaviors and theoretical critical shear strength of cold-rolled AZ31 alloy with different Li additions. Materials Science & Display Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 241-254.	5.6	16
139	Deformation behavior and texture evolution in an extruded Mg Li sheet with non-basal texture during tensile deformation. Materials Characterization, 2020, 159, 110041.	4.4	16
140	Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1705-1715.	4.9	16
141	Role of secondary phase in microstructural stability of as-extruded Mg–Sn–Ca at high temperature. Materials Science and Technology, 2016, 32, 1818-1825.	1.6	15
142	Preparation and Characterization of Magnesium Alloy Containing Al2Y Particles. Materials, 2018, 11, 1748.	2.9	15
143	Effect of grain size on the luminescent properties of Ce3+ doped Y3Al5O12 ceramic phosphor plates. Ceramics International, 2020, 46, 10452-10456.	4.8	15
144	Ameliorating mechanical properties and reducing anisotropy of as-extruded Mg-1.0Sn-0.5Ca alloy via Al addition. Progress in Natural Science: Materials International, 2021, 31, 722-730.	4.4	15

#	Article	IF	CITATIONS
145	Effect of extrusion processing parameters on microstructure and mechanical properties of as-extruded AZ31 sheets. Transactions of Nonferrous Metals Society of China, 2008, 18, s160-s164.	4.2	14
146	Mechanical properties and microstructure of as-extruded AZ31 Mg alloy at high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 51-56.	5.6	14
147	Effect of Extrusion Strain Path on Microstructure and Properties of AZ31 Magnesium Alloy Sheet. Acta Metallurgica Sinica (English Letters), 2015, 28, 1257-1263.	2.9	14
148	Enhancement of mechanical properties and corrosion resistance of magnesium alloy sheet by pre-straining and annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 216-221.	5.6	14
149	Corrosion and discharge behavior of Mgâ^'xLa alloys (x=0.0â^'0.8) as anode materials. Transactions of Nonferrous Metals Society of China, 2021, 31, 1979-1992.	4.2	14
150	Effects of Texture and Discharge Products on the Discharge Performance of Mg Anodes for Mg Air Batteries. Journal of the Electrochemical Society, 2020, 167, 130528.	2.9	14
151	Contact fatigue behavior of nano-ZrO2/Ni coating prepared by electro-brush plating. Surface and Coatings Technology, 2007, 202, 447-452.	4.8	13
152	Mechanical properties and anisotropy of AZ31 alloy sheet processed by flat extrusion container. Journal of Materials Research, 2013, 28, 1148-1154.	2.6	13
153	Enhancing strength and ductility of AZ31 magnesium alloy sheets by the trapezoid extrusion. Materials Science and Technology, 2014, 30, 227-230.	1.6	13
154	Effect of Compressive Deformation on Wear Property of Extruded ZK60 Magnesium Alloy. Tribology Transactions, 2019, 62, 1-7.	2.0	13
155	Microscopic deformation compatibility during biaxial tension in AZ31 Mg alloy rolled sheet at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 1-10.	5.6	13
156	Improving Strength and Formability of Rolled AZ31 Sheet by Two-Step Twinning Deformation. Jom, 2020, 72, 2551-2560.	1.9	13
157	Characterization of newly developed friction stir-arc welding method for AM60/AZ31 dissimilar Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140320.	5.6	13
158	Solution to Multiscale and Multiphysics Problems: A Phaseâ€Field Study of Fully Coupled Thermalâ€Soluteâ€Convection Dendrite Growth. Advanced Theory and Simulations, 2021, 4, 2000251.	2.8	13
159	Grain size dependence of annealing strengthening of an extruded Mg-Gd-Zn alloy subjected to pre-compression deformation. Journal of Magnesium and Alloys, 2022, 10, 3576-3588.	11.9	13
160	Effect of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-xMn alloys. Progress in Natural Science: Materials International, 2021, 31, 583-590.	4.4	13
161	Effect of Ce addition on hot tearing behavior of AZ91 alloy. Progress in Natural Science: Materials International, 2019, 29, 453-456.	4.4	12
162	Influence of Li Addition on the Microstructures and Mechanical Properties of Mg–Li Alloys. Metals and Materials International, 2021, 27, 1403-1415.	3.4	12

#	Article	IF	Citations
163	Pre-strain effect on twinning and de-twinning behaviors of Mg-3Li alloy traced by quasi-in-situ EBSD. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140069.	5.6	12
164	Comparison of room-temperature stretch formability of the as extruded Mg–Gd alloys with different double-peak pole spacing. Journal of Materials Research and Technology, 2021, 15, 4838-4851.	5 . 8	12
165	Anomalous effect of grain size on the room-temperature bendability of Mg–Gd alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142397.	5 . 6	12
166	Microstructure and mechanical behaviour of asymmetric extruded Mg–3Al–1Zn alloy sheets. Materials Science and Technology, 2013, 29, 710-714.	1.6	11
167	Improved ductility of magnesium alloy sheets by pre-hardening and annealing. Materials Science and Technology, 2015, 31, 1383-1387.	1.6	11
168	Effect of Vanadium on the Solidification and Homogenization Behaviors in Inconel 718 Alloy. Advanced Engineering Materials, 2016, 18, 1453-1459.	3.5	11
169	Effects of combined additions of SiO2 and MoS2 nanoparticles as lubricant additive on the tribological properties of AZ31 magnesium alloy. Science China Technological Sciences, 2016, 59, 689-698.	4.0	11
170	Grain Refinement Mechanism of the As-Cast and As-Extruded Mg–14Li Alloys with Al or Sn Addition. Metals, 2017, 7, 172.	2.3	11
171	Improving the isotropy and formability of extruded Mg-2Gd-1Zn (wt.%) alloy sheet by introducing an ellipse texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 836, 142699.	5.6	11
172	Grain refinement of Mg-Li-Al cast alloys by adding typical master alloys. Progress in Natural Science: Materials International, 2011, 21, 236-239.	4.4	10
173	Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5710-5716.	2.2	10
174	Influence of Continuous Bending Process on Texture Evolution and Mechanical Properties of AZ31 Magnesium Alloy. Acta Metallurgica Sinica (English Letters), 2018, 31, 225-233.	2.9	10
175	Diffusion behavior and reactions between Al and Ca in Mg alloys by diffusion couples. Journal of Materials Science and Technology, 2018, 34, 291-298.	10.7	10
176	Effects of annealing temperature on microstructure and mechanical properties of LZ91 alloy. Materials Science and Technology, 2020, 36, 2010-2017.	1.6	10
177	Mechanical behavior and microstructure evolution for extruded AZ31 sheet under side direction strain. Progress in Natural Science: Materials International, 2020, 30, 270-277.	4.4	10
178	Microstructure and corrosion properties of Mg–0.5Zn–0.2Ca–0.2Ce alloy with different processing conditions. Rare Metals, 2021, 40, 1924-1931.	7.1	10
179	Invariant plastic deformation mechanism in paramagnetic nickel $\hat{a} \in \mathbb{R}$ iron alloys. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
180	The effect of addition of cerium on the grain refinement of Mg–3Al–1Zn cast alloy. Journal of Materials Research, 2013, 28, 2694-2700.	2.6	9

#	Article	IF	Citations
181	Modified texture and room temperature formability of magnesium alloy sheet by Li addition. International Journal of Material Forming, 2016, 9, 305-311.	2.0	9
182	Interfacial reaction in (Mg-37.5Al)/(Mg-6.7Nd) diffusion couples. Metals and Materials International, 2016, 22, 1-6.	3.4	9
183	Effect of Gd addition on the microstructure and age hardening behavior of Mg-6Zn-1Mn-4Sn (wt.%) alloy. Journal of Materials Research and Technology, 2020, 9, 12737-12746.	5 . 8	9
184	Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 1487-1504.	2.9	9
185	Local atomic structures of Gd and Zn atoms in extruded Mg-Gd-Zn alloys. Scripta Materialia, 2021, 195, 113720.	5.2	9
186	The effects of second-alloying-element on the formability of Mg-Sn alloys in respect of the stacking fault energies of slip systems. Materials Today Communications, 2021, 29, 102829.	1.9	9
187	Non-uniform deformation behavior of dissimilar friction stir welded AM60/AZ31 joint and its influence on fracture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140318.	5. 6	9
188	Effect of Microstructure on the Corrosion Behavior of as-cast and Extruded Mg–Sn–Y Alloys. Journal of the Electrochemical Society, 2020, 167, 121503.	2.9	9
189	Microstructure and Corrosion Properties of Duplex-Structured Extruded Mg-6Li-4Zn-xMn Alloys. Acta Metallurgica Sinica (English Letters), 0, , 1.	2.9	9
190	High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1373-1379.	4.9	9
191	Effect of Ce addition on microstructure of Mg–9Li alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 1936-1941.	4.2	8
192	Mechanical properties and failure behavior of AZ61 magnesium alloy at high temperatures. Journal of Materials Science, 2018, 53, 8536-8544.	3.7	8
193	Achieving High Ductility in Hot-Rolled Mg-xZn-0.2Ca-0.2Ce Sheet by Zn Addition. Jom, 2020, 72, 1607-1618.	1.9	8
194	Size effect of the width of beta-Li phase on the ductility of magnesiumâ€"lithium dual-phase alloys. Materials Science & Departies, Microstructure and Processing, 2021, 814, 141217.	5.6	8
195	The Effect of Sr Addition on Hot Tearing Susceptibility of Mg-1Ca-xSr Alloys. Journal of Materials Engineering and Performance, 2021, 30, 7645-7654.	2.5	8
196	Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending. Acta Metallurgica Sinica (English Letters), 2022, 35, 727-744.	2.9	8
197	General hierarchical structure to solve transport phenomena with dissimilar time scales: Application in large-scale three-dimensional thermosolutal phase-field problems. Physical Review E, 2020, 102, 043313.	2.1	8
198	Effect of Multi-Pass Bending Deformation on Microstructure Evolution and Mechanical Properties of AZ31 Alloy Sheet. Materials Research, 2016, 19, 322-327.	1.3	8

#	Article	IF	Citations
199	Investigation of bubble dynamics in a micro-channel with obstacles using a conservative phase-field lattice Boltzmann method. Physics of Fluids, 2022, 34, .	4.0	8
200	Forming novel texture and enhancing the formability in Mg–3Al–Zn alloy sheets fabricated by transverse gradient extrusion. Journal of Materials Research and Technology, 2022, 18, 3143-3149.	5. 8	8
201	Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy. Acta Metallurgica Sinica (English Letters), 2022, 35, 1793-1811.	2.9	8
202	Simultaneous improvement of strength and ductility by Mn addition in extruded Mg–Gd–Zn alloy. Transactions of Nonferrous Metals Society of China, 2022, 32, 1460-1471.	4.2	8
203	Effects of heat treatment on the microstructural evolution and creep resistance of Elektron21 alloy and its nanocomposite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139669.	5 . 6	7
204	Investigation into Atomic Diffusion at the Interface During Extrusion Welding of Magnesium and Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4222-4233.	2.2	7
205	Influence of Ce content on the microstructures and tensile properties of Mg-1Gd-0.5Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141675.	5.6	7
206	Micro-Alloyed Mg-Al-Mn-La Anode for Mg-Air Batteries. Journal of the Electrochemical Society, 2021, 168, 090526.	2.9	7
207	Intrinsic mechanical and interfacial characteristics of precipitates contributing to the room and elevated temperature strength in Mg–Sn–Y alloys. Journal of Materials Research and Technology, 2021, 15, 3928-3941.	5.8	7
208	Processing Micro-Alloyed Mg-La Binary Alloy into a High-Performance Mg-Air Battery Anode via Extrusion. Journal of the Electrochemical Society, 2022, 169, 020575.	2.9	7
209	Comparison on Hot Tearing Behavior of Binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2986-3001.	2.2	7
210	Enhanced mechanical properties of Mg-3Al-1Zn alloy sheets through slope extrusion. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1343-1350.	4.9	7
211	Effects of Li addition on the microstructure and tensile properties of the extruded Mg-1Zn-xLi alloy. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1380-1387.	4.9	7
212	In-situ investigation on the microstructure evolution of Mg-2Gd alloys during the V-bending tests. Journal of Materials Science and Technology, 2022, 131, 167-176.	10.7	7
213	Grain refinement and plastic formability of Mg-14Li-1Al alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s503-s507.	4.2	6
214	Influence of microstructural evolution on mechanical behaviour of AZ31 alloy sheet processed by flat extrusion container. Materials Science and Technology, 2013, 29, 1012-1016.	1.6	6
215	Effect of Al on the microstructure, corrosion behavior and mechanical properties of Mg-4Li. Anti-Corrosion Methods and Materials, 2020, 67, 31-37.	1.5	6
216	Grain refinement of Mg-3Y alloy using Mg-10Al2Y master alloy. Journal of Rare Earths, 2021, 39, 881-888.	4.8	6

#	Article	IF	CITATIONS
217	Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy. Metals, 2022, 12, 221.	2.3	6
218	Improving the room-temperature bendability of Mg-3Al-1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1322-1333.	4.9	6
219	Comparison of edge crack behavior of Mg sheets prepared by online heating rolling. Journal of Materials Research and Technology, 2022, 19, 5037-5048.	5.8	6
220	Effects of Al and Ca on microstructure and surface defect of magnesium alloy thin strip. Transactions of Nonferrous Metals Society of China, 2010, 20, s361-s365.	4.2	5
221	Microstructural Evolution of Mg-4Al-2.5Ca Alloy during Solidification. Materials Science Forum, 0, 816, 486-491.	0.3	5
222	Impact of asymmetry deformation on microstructure and mechanical properties of AZ31B alloy sheets deformed by on-line heating rolling. Progress in Natural Science: Materials International, 2022, 32, 96-103.	4.4	5
223	Effect of SiO ₂ nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet. Materials Research Innovations, 2015, 19, S127-S132.	2.3	4
224	Microstructures and Mechanical Properties of Mg-9Al/Ti Metallurgical Bonding Prepared by Liquid-Solid Diffusion Couples. Metals, 2018, 8, 778.	2.3	4
225	Formation and characterization of hot tearing in AZ series alloys. International Journal of Materials Research, 2018, 109, 694-698.	0.3	4
226	Optimized Tension for AZ31B Thin Sheets Rolled with On-Line Heating Rolling. Acta Metallurgica Sinica (English Letters), 2021, 34, 227-238.	2.9	4
227	Enhanced Degradability of Mg-2Gd Alloy by Alloying Cu. Journal of the Electrochemical Society, 2021, 168, 071504.	2.9	4
228	Investigation on the Phase Relationship and Solidification Processes of Mg-rich Mg-Mn-Y Alloys. Journal of Phase Equilibria and Diffusion, 2021, 42, 441-451.	1.4	4
229	Revealing the role of Al in the microstructural evolution and creep properties of Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142358.	5.6	4
230	Editorial for special issue on developments of magnesium alloys for structural and functional applications. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1307-1309.	4.9	4
231	Influence of rolling deformation on microstructures and mechanical properties of laminated Mg/Zr composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143460.	5.6	4
232	Effect of Cooling Rate on Hot Tearing Behavior of Mg-9Al-1Zn-0.8Ce Alloy. Materials Science Forum, 0, 898, 61-70.	0.3	3
233	First Principle and Experimental Study for Site Preferences of Formability Improved Alloying Elements in Mg Crystal. Metals and Materials International, 2018, 24, 830-839.	3 . 4	3
234	Deformation Behavior of the Mg–Zn–Ca–Ce Alloy Sheets Subjected to Uniaxial and Biaxial Tensile Tests. Metals and Materials International, 2021, 27, 4322-4332.	3.4	3

#	Article	IF	Citations
235	Interfacial Reactions between Mg-40Al and Mg-30Y Master Alloys. Metals, 2020, 10, 825.	2.3	3
236	Thermo-mechanical properties of Cr–Co–Ni alloys from longitudinal spin fluctuation theory. Applied Physics Letters, 2021, 119, 081904.	3.3	3
237	Study on Microstructures and Mechanical Properties of Layered and Layered Gradient Zr/Ti Materials. Advanced Engineering Materials, 0, , 2100805.	3.5	3
238	Modified Microstructures and Corrosion Behaviors of Mg-Gd-Cu Alloys through Annealing Treatment. Journal of the Electrochemical Society, 2021, 168, 101503.	2.9	3
239	A Novel Mg–CaMgSn Master Alloy for Grain Refinement in Mg–Al-Based Alloys. Metals, 2021, 11, 1722.	2.3	3
240	Effect of laser shock on lamellar eutectic growth: A phase-field study. International Journal of Heat and Mass Transfer, 2022, 183, 122069.	4.8	3
241	"Solid solution strengthening and ductilizing―theory for magnesium alloys. , 2022, , 47-82.		3
242	Effect of the Rolling Process on Microstructures and Mechanical Properties of the Extruded LA91 Alloy Sheet. Materials Science Forum, 0, 686, 90-95.	0.3	2
243	Effect of Al ₂ Ca Compound on Microstructure of As-Cast AZ31 and AZ61 Alloys. Materials Science Forum, 0, 747-748, 383-389.	0.3	2
244	CRSS of Mg-X(X=Zn, Y) Binary Solid Solution via First-Principles Study. Materials Science Forum, 2018, 913, 614-619.	0.3	2
245	Study on the Fine Grain Size and Microhardness at the Interface of AZ31/Mgâ€Y Composites. Advanced Engineering Materials, 2021, 23, 2100214.	3.5	2
246	Effect of Ce addition on the highâ€temperature oxidation resistance of Mg–Gd alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1383-1392.	1.5	2
247	Effects of Al content on microstructure of as-cast Mg–3·5Ca alloy. Materials Research Innovations, 2014, 18, S4-137-S4-141.	2.3	1
248	Microstructure and Mechanical Responses of Extruded Magnesium Alloy Sheets with Lithium Addition. Materials Science Forum, 0, 816, 504-509.	0.3	1
249	The High-Solution Design of Magnesium Alloys. Minerals, Metals and Materials Series, 2021, , 27-31.	0.4	1
250	Dynamic Compression Behavior and Microstructure of Extruded ZM61 Magnesium Alloy Under High Strain Rates. Jom, 0, , 1.	1.9	1
251	Tensile Mechanical Properties and Deformation Mechanism of the Extruded ZM61 Magnesium Alloy at High Strain Rates. Advanced Engineering Materials, 0, , 2101554.	3.5	1
252	Designing a Mixed Texture in Mg/Mg Laminated Composite via Bimetal Co-Extrusion to Ameliorate the Mechanical Anisotropy. Metals, 2022, 12, 637.	2.3	1

#	Article	IF	CITATIONS
253	Numerical investigation of eutectic growth dynamics under convection by 3D phase-field method. Computers and Mathematics With Applications, 2022, 114, 83-94.	2.7	1
254	Correction: Xie et al. Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts. Nanomaterials 2017, 7, 154. Nanomaterials, 2022, 12, 2364.	4.1	1
255	Solid–Liquid Diffusion and Phase Growth Kinetics in Mg-Ca Binary System. Materials Science Forum, 2015, 816, 418-423.	0.3	0
256	Effects of Gd on the microstructure and mechanical properties of Mg–Li dual-phase alloys. International Journal of Materials Research, 2020, 111, 432-438.	0.3	0
257	Ultrahigh plasticity Mg–Gd–Zr alloy. , 2022, , 83-118.		0
258	Study on Microstructure and Properties of Singleâ€Pass Online Heating Rolling of Mnâ€Containing Magnesium Alloy Sheets. Advanced Engineering Materials, 0, , 2200493.	3.5	0