Laura Belvisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116142/publications.pdf Version: 2024-02-01

		182225	286692
104	2,614	30	43
papers	citations	h-index	g-index
113	113	113	2837
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advanced Pyrrolidineâ€Carbamate Selfâ€Immolative Spacer with Tertiary Amine Handle Induces Superfast Cyclative Drug Release. ChemMedChem, 2022, 17, .	1.6	5
2	Functionalized 2â€Hydroxybenzaldehydeâ€PEG Modules as Portable Tags for the Engagement of Protein Lysine ϵâ€Amino Groups. European Journal of Organic Chemistry, 2021, 2021, 1763-1767.	1.2	1
3	Prediction and Validation of a Druggable Site on Virulence Factor of Drug Resistant <i>Burkholderia cenocepacia</i> **. Chemistry - A European Journal, 2021, 27, 10341-10348.	1.7	6
4	A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chemical Communications, 2021, 57, 7778-7781.	2.2	7
5	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie, 2020, 132, 4205-4210.	1.6	8
6	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie - International Edition, 2020, 59, 4176-4181.	7.2	35
7	Cyclic RGD and isoDGR Integrin Ligands Containing cis-2-amino-1-cyclopentanecarboxylic (cis-β-ACPC) Scaffolds. Molecules, 2020, 25, 5966.	1.7	5
8	Side chain effect in the modulation of αvβ3/α5β1 integrin activity via clickable isoxazoline-RGD-mimetics: development of molecular delivery systems. Scientific Reports, 2020, 10, 7410.	1.6	4
9	Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, 14740-14757.	1.7	68
10	Bromineâ€Promoted Glycosidation of Conformationally Superarmed Thioglycosides. Chemistry - A European Journal, 2019, 25, 11831-11836.	1.7	10
11	Exploring E-cadherin-peptidomimetics interaction using NMR and computational studies. PLoS Computational Biology, 2019, 15, e1007041.	1.5	5
12	β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Organic and Biomolecular Chemistry, 2019, 17, 4705-4710.	1.5	14
13	Synthesis and Biological Evaluation of RGD and <i>iso</i> DGR–Monomethyl Auristatin Conjugates Targeting Integrin α _V l² ₃ . ChemMedChem, 2019, 14, 938-942.	1.6	26
14	Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Frontiers in Chemistry, 2019, 7, 170.	1.8	10
15	The Importance of Detail: How Differences in Ligand Structures Determine Distinct Functional Responses in Integrin $\hat{1}\pm$ v $\hat{1}^2$ 3. Chemistry - A European Journal, 2019, 25, 5959-5970.	1.7	10
16	Stem-like Cancer Cells in a Dynamic 3D Culture System: A Model to Study Metastatic Cell Adhesion and Anti-cancer Drugs. Cells, 2019, 8, 1434.	1.8	27
17	A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells. Organic and Biomolecular Chemistry, 2019, 17, 8913-8917.	1.5	4
18	Frontispiece: Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal. 2019. 25	1.7	0

#	Article	IF	CITATIONS
19	Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrinâ€Targeted Conjugate. Chemistry - A European Journal, 2019, 25, 1696-1700.	1.7	29
20	A critical assessment of force field accuracy against NMR data for cyclic peptides containing β-amino acids. Physical Chemistry Chemical Physics, 2018, 20, 15807-15816.	1.3	9
21	Tumor Targeting with an <i>iso</i> DGR–Drug Conjugate. Chemistry - A European Journal, 2017, 23, 7910-7914.	1.7	17
22	Insights into the Binding of Cyclic RGD Peptidomimetics to α ₅ β ₁ Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen, 2017, 6, 128-136.	0.9	21
23	Targeting Integrin α _V β ₃ with Theranostic RGD-Camptothecin Conjugates Bearing a Disulfide Linker: Biological Evaluation Reveals a Complex Scenario. ChemistrySelect, 2017, 2, 4759-4766.	0.7	14
24	Frontispiece: Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, .	1.7	0
25	Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, 14410-14415.	1.7	27
26	Investigating the Interaction of Cyclic RGD Peptidomimetics with αVβ6 Integrin by Biochemical and Molecular Docking Studies. Cancers, 2017, 9, 128.	1.7	18
27	High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design. PLoS Computational Biology, 2017, 13, e1005334.	1.5	12
28	Crystal Structure of Human E-Cadherin-EC1EC2 in Complex with a Peptidomimetic Competitive Inhibitor of Cadherin Homophilic Interaction. Journal of Medicinal Chemistry, 2016, 59, 5089-5094.	2.9	17
29	New Î ² -Lactam Derivatives Modulate Cell Adhesion and Signaling Mediated by RGD-Binding and Leukocyte Integrins. Journal of Medicinal Chemistry, 2016, 59, 9721-9742.	2.9	43
30	Thermodynamically–Weighted Conformational Ensemble of Cyclic RGD Peptidomimetics from NOE Data. Journal of Physical Chemistry B, 2016, 120, 7098-7107.	1.2	15
31	New potent α _v î² ₃ integrin ligands based on azabicycloalkane (î³,α)-dipeptide mimics. Organic and Biomolecular Chemistry, 2016, 14, 3221-3233.	1.5	4
32	Synthesis, Characterization, and Biological Evaluation of a Dualâ€Action Ligand Targeting α _v β ₃ Integrin and VEGF Receptors. ChemistryOpen, 2015, 4, 633-641.	0.9	25
33	Synthesis of Easyâ€ŧoâ€Functionalize AzaÂbicycloalkane Scaffolds as Dipeptide Turn Mimics en Route to cRGDâ€Based Bioconjugates. European Journal of Organic Chemistry, 2015, 2015, 7557-7570.	1.2	12
34	Metadynamics Simulations Rationalise the Conformational Effects Induced by <i>N</i> â€Methylation of RGD Cyclic Hexapeptides. Chemistry - A European Journal, 2015, 21, 14165-14170.	1.7	20
35	?v?3 Integrin-Targeted Peptide/Peptidomimetic-Drug Conjugates: In-Depth Analysis of the Linker Technology. Current Topics in Medicinal Chemistry, 2015, 16, 314-329.	1.0	44
36	Cyclic <i>iso</i> DGR and RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds are Integrin Antagonists. Chemistry - A European Journal, 2015, 21, 6265-6271.	1.7	33

#	Article	IF	CITATIONS
37	Designing nanomolar antagonists of DC-SIGN-mediated HIV infection: ligand presentation using molecular rods. Chemical Communications, 2015, 51, 3816-3819.	2.2	74
38	New Insights into the Molecular Mechanism of E-Cadherin-Mediated Cell Adhesion by Free Energy Calculations. Journal of Chemical Theory and Computation, 2015, 11, 1354-1359.	2.3	7
39	Synthesis and Biological Evaluation of RGD Peptidomimetic–Paclitaxel Conjugates Bearing Lysosomally Cleavable Linkers. Chemistry - A European Journal, 2015, 21, 6921-6929.	1.7	48
40	Computational design of novel peptidomimetic inhibitors of cadherin homophilic interactions. Organic and Biomolecular Chemistry, 2015, 13, 2570-2573.	1.5	16
41	Antitumor Activity of a Novel Homodimeric SMAC Mimetic in Ovarian Carcinoma. Molecular Pharmaceutics, 2014, 11, 283-293.	2.3	17
42	Cyclic <i>iso</i> DGR Peptidomimetics as Lowâ€Nanomolar α _v β ₃ Integrin Ligands. Chemistry - A European Journal, 2013, 19, 3563-3567.	1.7	28
43	Determination of the binding epitope of RGD-peptidomimetics to αvβ3 and αIIbβ3 integrin-rich intact cells by NMR and computational studies. Organic and Biomolecular Chemistry, 2013, 11, 3886.	1.5	22
44	Modulation of αvβ3- and α5β1-integrin-mediated adhesion by dehydro-β-amino acids containing peptidomimetics. European Journal of Medicinal Chemistry, 2013, 66, 258-268.	2.6	19
45	Modulation of $\hat{I}\pm v\hat{I}^2$ 3- and $\hat{I}\pm 5\hat{I}^2$ 1-integrin-mediated adhesion by dehydro- \hat{I}^2 -amino acids containing peptidomimetics. , 2013, 66, 258-258.		1
46	Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic Arginine–Clycine–Aspartate (RGD) Peptidomimetic–Paclitaxel Conjugates Targeting Integrin α _V β ₃ . Journal of Medicinal Chemistry, 2012, 55, 10460-10474.	2.9	68
47	A NMR and computational study of Smac mimics targeting both the BIR2 and BIR3 domains in XIAP protein. Organic and Biomolecular Chemistry, 2012, 10, 3278.	1.5	8
48	Design, Synthesis, and Biological Evaluation of Novel cRGD–Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconjugate Chemistry, 2012, 23, 1610-1622.	1.8	41
49	Homo- and heterodimeric Smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part I: Synthesis. Bioorganic and Medicinal Chemistry, 2012, 20, 6687-6708.	1.4	20
50	Dimeric Smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part II: Structural and biological characterization. Bioorganic and Medicinal Chemistry, 2012, 20, 6709-6723.	1.4	29
51	Cyclic RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands. Chemistry - A European Journal, 2012, 18, 6195-6207.	1.7	62
52	Inside Cover: Cyclic RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands (Chem. Eur. J. 20/2012). Chemistry - A European Journal, 2012, 18, 6106-6106.	1.7	0
53	Synthesis of Gd and ⁶⁸ Ga Complexes in Conjugation with a Conformationally Optimized RGD Sequence as Potential MRI and PET Tumorâ€Imaging Probes. ChemMedChem, 2012, 7, 1084-1093.	1.6	53
54	Second generation of fucose-based DC-SIGN ligands : affinity improvement and specificity versus Langerin. Organic and Biomolecular Chemistry, 2011, 9, 5778.	1.5	60

#	Article	IF	CITATIONS
55	Development of Isoxazolineâ€Containing Peptidomimetics as Dual α _v β ₃ and α ₅ β ₁ Integrin Ligands. ChemMedChem, 2011, 6, 2264-2272.	1.6	22
56	A new optical imaging probe targeting <i>α</i> _V <i>β</i> ₃ integrin in glioblastoma xenografts. Contrast Media and Molecular Imaging, 2011, 6, 449-458.	0.4	39
57	STD and trNOESY NMR Study of Receptor–Ligand Interactions in Living Cancer Cells. ChemBioChem, 2011, 12, 695-699.	1.3	39
58	Foldamers of bifunctional diketopiperazines displaying a β-bend ribbon structure. Tetrahedron Letters, 2010, 51, 4278-4280.	0.7	15
59	Antiangiogenic Effect of Dual/Selective α ₅ β ₁ /α _v β ₃ Integrin Antagonists Designed on Partially Modified Retro-Inverso Cyclotetrapeptide Mimetics. Journal of Medicinal Chemistry, 2010, 53, 106-118.	2.9	29
60	Cyclic RGDâ€Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands. Chemistry - A European Journal, 2009, 15, 12184-12188.	1.7	58
61	Cyclic RGDâ€Containing Functionalized Azabicycloalkane Peptides as Potent Integrin Antagonists for Tumor Targeting. ChemMedChem, 2009, 4, 615-632.	1.6	44
62	Rational design, synthesis and characterization of potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer therapy. Bioorganic and Medicinal Chemistry, 2009, 17, 5834-5856.	1.4	36
63	A Potent Integrin Antagonist from a Small Library of Cyclic RGD Pentapeptide Mimics Including Benzyl‣ubstituted Azabicycloalkane Amino Acids. ChemMedChem, 2008, 3, 1589-1603.	1.6	27
64	Transferred-NOE NMR experiments on intact human platelets: receptor-bound conformation of RGD-peptide mimics. Organic and Biomolecular Chemistry, 2008, 6, 258-262.	1,5	24
65	Synthesis and Conformational Studies of Peptidomimetics Containing a New Bifunctional Diketopiperazine Scaffold Acting as a β-Hairpin Inducer. Journal of Organic Chemistry, 2008, 73, 652-660.	1.7	47
66	Complete Characterization of Extracts of <i>Onopordum illyricum</i> L. (Asteraceae) by HPLC/PDA/ESIMS and NMR. Natural Product Communications, 2008, 3, 1934578X0800301.	0.2	5
67	Nonpeptide Integrin Antagonists: RGD Mimetics Incorporating Substituted Azabicycloalkanes as Amino Acid Replacements. European Journal of Organic Chemistry, 2007, 2007, 1309-1317.	1.2	10
68	Synthesis and conformational analysis of an α-d-mannopyranosyl-(1→2)-α-d-mannopyranosyl-(1→6)-α-d-mannopyranose mimic. Carbohydrate Research, 2 342, 1859-1868.	2007,1	18
69	First round of a focused library of cholera toxin inhibitors. Carbohydrate Research, 2007, 342, 1651-1660.	1.1	18
70	Targeting integrins: Insights into structure and activity of cyclic RGD pentapeptide mimics containing azabicycloalkane amino acids. Bioorganic and Medicinal Chemistry, 2006, 14, 169-180.	1.4	61
71	Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides. Journal of Physics Condensed Matter, 2006, 18, S329-S345.	0.7	20
72	Synthesis of Functionalized Azabicycloalkane Amino Acids as Dipeptide Mimics. Synthesis, 2006, 2006, 1133-1140.	1.2	5

#	Article	IF	CITATIONS
73	Grafting Aminocyclopentane Carboxylic Acids onto the RGD Tripeptide Sequence Generates Low Nanomolar αVβ3/αVβ5Integrin Dual Binders. Journal of Medicinal Chemistry, 2005, 48, 7675-7687.	2.9	49
74	Biological and molecular properties of a new αvβ3/αvβ5 integrin antagonist. Molecular Cancer Therapeutics, 2005, 4, 1670-1680.	1.9	75
75	Functionalized Azabicycloalkane Amino Acids by Nitrone 1,3-Dipolar Intramolecular Cycloaddition. Journal of Organic Chemistry, 2005, 70, 4124-4132.	1.7	39
76	Design, Synthesis, Conformational Analysis and Application of AzabicycloÂalkane Amino Acids as Constrained Dipeptide Mimics. Synlett, 2004, 2004, 1449-1471.	1.0	4
77	Stereoselective synthesis of Cα-tetrasubstituted azabicyclo[X.3.0]alkane amino acids. Tetrahedron Letters, 2004, 45, 6311-6315.	0.7	7
78	Synthesis of substituted conformationally constrained 6,5- and 7,5-fused bicyclic lactams as dipeptide mimics. Tetrahedron, 2003, 59, 6241-6250.	1.0	22
79	Structural investigations of isomeric oxidised forms of hyperforin by HPLC-NMR and HPLC-MSn. Phytochemical Analysis, 2003, 14, 290-297.	1.2	45
80	Cyclic RGD Peptides Containing Azabicycloalkane Reverse-Turn Mimics. Helvetica Chimica Acta, 2002, 85, 4353-4368.	1.0	18
81	Potent Integrin Antagonists from a Small Library of RGD-Including Cyclic Pseudopeptides. Organic Letters, 2001, 3, 1001-1004.	2.4	49
82	Practical stereoselective synthesis of conformationally constrained unnatural proline-based amino acids and peptidomimetics. Tetrahedron, 2001, 57, 6463-6473.	1.0	39
83	Simulation of carbohydrate-protein interactions: computer-aided design of a second generation GM1 mimic. Journal of Computer-Aided Molecular Design, 2001, 15, 117-128.	1.3	9
84	Title is missing!. Organic Letters, 2001, 3, 1001-1004.	2.4	2
85	Potent integrin antagonists from a small library of RGD-including cyclic pseudopeptides. Organic Letters, 2001, 3, 1001-4.	2.4	56
86	Rationally Designed Bicyclic Lactams Control Different Turn Motifs and Folding Patterns in Hexapeptide Mimics. , 2000, 2000, 695-699.		16
87	Conformational Analysis of Azabicycloalkane Amino Acid Scaffolds as Reverse-Turn Inducer Dipeptide Mimics. European Journal of Organic Chemistry, 2000, 2000, 2563-2569.	1.2	43
88	Synthesis of Azabicycloalkane Amino Acid Scaffolds as Reverse-Turn Inducer Dipeptide Mimics. European Journal of Organic Chemistry, 2000, 2000, 2571-2581.	1.2	27
89	Conformational Preferences of Peptides Containing Reverse-Turn Mimetic Bicyclic Lactams: Inverse γ-Turns versus Type-Il′ β-Turns – Insights into β-Hairpin Stability. , 1999, 1999, 389-400.		92
90	Stereoselective synthesis of 6,5-bicyclic reverse-turn peptidomimetics. Tetrahedron, 1998, 54, 5325-5336.	1.0	14

Laura Belvisi

#	Article	IF	CITATIONS
91	Design and synthesis of nonpeptide angiotensin II receptor antagonists featuring acyclic imidazole-mimicking structural units. Bioorganic and Medicinal Chemistry, 1998, 6, 2013-2027.	1.4	4
92	Design and synthesis of conformationally constrained arginal thrombin inhibitors. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2205-2210.	1.0	15
93	A 3D QSAR CoMFA study of non-peptide angiotensin II receptor antagonists. Journal of Computer-Aided Molecular Design, 1996, 10, 567-582.	1.3	33
94	Conformationally constrained dipeptides: Synthesis of 7,5- and 6,5-fused bicyclic lactams by stereoselective radical cyclizations. Tetrahedron Letters, 1995, 36, 625-628.	0.7	46
95	Non peptide angiotensin II receptor antagonists: A 3D-QSAR comfa-like approach. AIP Conference Proceedings, 1995, , .	0.3	1
96	N-3-Substituted Pyrimidinones as Potent, Orally Active, AT1 Selective Angiotensin II Receptor Antagonists. Journal of Medicinal Chemistry, 1995, 38, 4806-4820.	2.9	59
97	A 3D QSAR approach to the search for geometrical similarity in a series of nonpeptide angiotensin II receptor antagonists. Journal of Computer-Aided Molecular Design, 1994, 8, 211-220.	1.3	15
98	A conformational study of N-tosyl oxazolidines using molecular mechanics and crystallography. Journal of Molecular Structure, 1994, 318, 189-202.	1.8	17
99	Nonpeptide Angiotensin II Receptor Antagonists. Synthesis, in vitro Activity, and Molecular Modeling Studies of N-[(Heterobiaryl)methyl]imidazoles. Journal of Medicinal Chemistry, 1994, 37, 3928-3938.	2.9	19
100	Stereoselective radical-mediated cyclization of norephedrine derived o-bromobenzamides: Enantioselective synthesis of 4-substituted 1,2,3,4-tetrahydroisoquinolines. Tetrahedron: Asymmetry, 1993, 4, 273-280.	1.8	25
101	On the role of the molecular electrostatic potential in modelling the activity of non-peptide angiotensin II receptor antagonists. Computational and Theoretical Chemistry, 1993, 281, 237-252.	1.5	6
102	The first asymmetric synthesis of enantiopure .alphasulfenyl dithioacetals and .alphasulfenyl aldehydes. Journal of Organic Chemistry, 1993, 58, 3165-3168.	1.7	33
103	Stereoselective radical-mediated cyclization of norephdrine derived \hat{I}_{\pm} -iodoamides: synthesis of enantiopure pyrrolidines and trandition state modelling1. Tetrahedron, 1992, 48, 3945-3960.	1.0	32
104	Structure-activity relationship of Ca2+ channel blockers: A study using conformational analysis and chemometric methods. Journal of Computer-Aided Molecular Design, 1991, 5, 571-584.	1.3	8