
Zhe Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115661/publications.pdf Version: 2024-02-01

745 LU

#	Article	IF	CITATIONS
1	BRD2 compartmentalizes the accessible genome. Nature Genetics, 2022, 54, 481-491.	21.4	29
2	A General Method to Improve Fluorophores Using Deuterated Auxochromes. Jacs Au, 2021, 1, 690-696.	7.9	106
3	Singleâ€cell imaging of genome organization and dynamics. Molecular Systems Biology, 2021, 17, e9653.	7.2	25
4	Biomolecular Condensates and Their Links to Cancer Progression. Trends in Biochemical Sciences, 2021, 46, 535-549.	7.5	51
5	A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity. Nucleic Acids Research, 2021, 49, 10931-10955.	14.5	7
6	ecDNA hubs drive cooperative intermolecular oncogene expression. Nature, 2021, 600, 731-736.	27.8	123
7	Rational Design of Bioavailable Photosensitizers for Manipulation and Imaging of Biological Systems. Cell Chemical Biology, 2020, 27, 1063-1072.e7.	5.2	23
8	Microdomains form on the luminal face of neuronal extracellular vesicle membranes. Scientific Reports, 2020, 10, 11953.	3.3	14
9	A general method to optimize and functionalize red-shifted rhodamine dyes. Nature Methods, 2020, 17, 815-821.	19.0	155
10	Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Molecular Cell, 2020, 79, 677-688.e6.	9.7	87
11	Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 2020, 6, eaaz6699.	10.3	66
12	3D ATAC-PALM: super-resolution imaging of the accessible genome. Nature Methods, 2020, 17, 430-436.	19.0	62
13	Two-parameter single-molecule analysis for measurement of chromatin mobility. STAR Protocols, 2020, 1, 100223.	1.2	9
14	Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science, 2019, 365, 699-704.	12.6	362
15	A Neuronâ€Glia Coâ€culture System for Studying Intercellular Lipid Transport. Current Protocols in Cell Biology, 2019, 84, e95.	2.3	18
16	NDP52 tunes cortical actin interaction with astral microtubules for accurate spindle orientation. Cell Research, 2019, 29, 666-679.	12.0	13
17	Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell, 2019, 177, 1522-1535.e14.	28.9	350
18	Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nature Cell Biology, 2019, 21, 1578-1589.	10.3	237

Zhe Liu

#	Article	IF	CITATIONS
19	MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. ELife, 2019, 8, .	6.0	29
20	Visualizing transcription factor dynamics in living cells. Journal of Cell Biology, 2018, 217, 1181-1191.	5.2	159
21	Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling. Proceedings of the United States of America, 2018, 115, 343-348.	7.1	79
22	Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science, 2018, 361, .	12.6	750
23	Shaping development by stochasticity and dynamics in gene regulation. Open Biology, 2017, 7, 170030.	3.6	14
24	A dynamic interplay of enhancer elements regulates <i>Klf4</i> expression in naÃ ⁻ ve pluripotency. Genes and Development, 2017, 31, 1795-1808.	5.9	49
25	Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Molecular Cell, 2017, 67, 566-578.e10.	9.7	174
26	Bright photoactivatable fluorophores for single-molecule imaging. Nature Methods, 2016, 13, 985-988.	19.0	338
27	Emerging Imaging and Genomic Tools for Developmental Systems Biology. Developmental Cell, 2016, 36, 597-610.	7.0	45
28	Real-time imaging of Huntingtin aggregates diverting target search and gene transcription. ELife, 2016, 5, .	6.0	74
29	Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Molecular Cell, 2015, 58, 644-659.	9.7	419
30	Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 2015, 350, 823-826.	12.6	301
31	Imaging Transcription: Past, Present, and Future. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 1-8.	1.1	41
32	Lighting Up Genes in Single Cells at Scale. Cell, 2015, 162, 705-707.	28.9	1
33	A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation. ELife, 2015, 4, e08536.	6.0	28
34	Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells. Cell, 2014, 156, 1274-1285.	28.9	532
35	Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346, 1257998.	12.6	1,567
36	3D imaging of Sox2 enhancer clusters in embryonic stem cells. ELife, 2014, 3, e04236.	6.0	204

Zhe Liu

#	Article	IF	CITATIONS
37	Control of Embryonic Stem Cell Lineage Commitment by Core Promoter Factor, TAF3. Cell, 2011, 146, 720-731.	28.9	155
38	Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High Affinity Chromatin Interactions. SSRN Electronic Journal, 0, , .	0.4	2