Zhen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115473/publications.pdf Version: 2024-02-01

ΖΗΕΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2011, 133, 14244-14247.	13.7	363
2	Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy, 2021, 6, 475-486.	39.5	252
3	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb ₂ O _{5–<i>x</i>} Nanocluster toward Superior Li–S Performance. ACS Nano, 2020, 14, 4849-4860.	14.6	201
4	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	38.1	191
5	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228.	19.5	177
6	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.	12.8	163
7	Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy, 2020, 72, 104685.	16.0	160
8	Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy and Environmental Science, 2020, 13, 5143-5151.	30.8	159
9	Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy, 2020, 71, 104592.	16.0	157
10	Rational design of tailored porous carbon-based materials for CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 20985-21003.	10.3	150
11	Poor Stability of Li ₂ CO ₃ in the Solid Electrolyte Interphase of a Lithiumâ€Metal Anode Revealed by Cryoâ€Electron Microscopy. Advanced Materials, 2021, 33, e2100404.	21.0	147
12	"Two Ships in a Bottle―Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 6855-6864.	13.7	139
13	An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 2011, 47, 4908.	4.1	134
14	Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9661-9671.	13.7	134
15	Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for Highâ€Energy Flexible Znâ€Air Batteries. Advanced Energy Materials, 2019, 9, 1900911.	19.5	133
16	"Ship in a Bottle―Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn–Air Batteries. ACS Nano, 2019, 13, 7062-7072.	14.6	120
17	Selfâ€Templated Hierarchically Porous Carbon Nanorods Embedded with Atomic Feâ€N ₄ Active Sites as Efficient Oxygen Reduction Electrocatalysts in Znâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2008085.	14.9	117
18	Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003291.	19.5	105

#	Article	IF	CITATIONS
19	Tantalum-Based Electrocatalyst for Polysulfide Catalysis and Retention for High-Performance Lithium-Sulfur Batteries. Matter, 2020, 3, 920-934.	10.0	104
20	Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nature Communications, 2022, 13, 2486.	12.8	99
21	In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture. Carbon, 2019, 143, 531-541.	10.3	96
22	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	11.2	95
23	Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12, 3066.	12.8	92
24	500 Wh kg ^{â^'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	21.0	86
25	Microencapsulation of Phase Change Materials with Polystyrene/Cellulose Nanocrystal Hybrid Shell via Pickering Emulsion Polymerization. ACS Sustainable Chemistry and Engineering, 2019, 7, 17756-17767.	6.7	84
26	Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. Nano Letters, 2020, 20, 4029-4037.	9.1	78
27	Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sensors and Actuators B: Chemical, 2020, 302, 127192.	7.8	76
28	Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy and Environmental Science, 2021, 14, 4882-4889.	30.8	73
29	Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 12860-12867.	13.8	68
30	A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP. Carbohydrate Polymers, 2019, 205, 322-329.	10.2	66
31	Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie - International Edition, 2019, 58, 13969-13975.	13.8	64
32	Hierarchically Porous Ti ₃ C ₂ MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 19457-19467.	14.6	63
33	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	19.5	61
34	Inverse Pickering Emulsions Stabilized by Cinnamate Modified Cellulose Nanocrystals as Templates To Prepare Silica Colloidosomes. ACS Sustainable Chemistry and Engineering, 2018, 6, 2583-2590.	6.7	59
35	New strategy to prepare ultramicroporous carbon by ionic activation for superior CO2 capture. Chemical Engineering Journal, 2018, 337, 290-299.	12.7	58
36	Bioinspired Tough Solidâ€State Electrolyte for Flexible Ultralongâ€Life Zinc–Air Battery. Advanced Materials, 2022, 34, e2110585.	21.0	58

#	Article	IF	CITATIONS
37	UV-Absorbing Cellulose Nanocrystals as Functional Reinforcing Fillers in Poly(vinyl chloride) Films. ACS Applied Nano Materials, 2018, 1, 632-641.	5.0	56
38	Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization. Journal of Colloid and Interface Science, 2019, 555, 489-497.	9.4	55
39	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	21.0	52
40	Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydrate Polymers, 2018, 199, 603-609.	10.2	48
41	A Gasâ€Phase Migration Strategy to Synthesize Atomically Dispersed Mnâ€N Catalysts for Zn–Air Batteries. Small Methods, 2021, 5, e2100024.	8.6	44
42	A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization. Journal of Materials Chemistry A, 2019, 7, 15633-15639.	10.3	43
43	Hierarchically Nanostructured Solidâ€State Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
44	Integrating Nanoreactor with O–Nb–C Heterointerface Design and Defects Engineering Toward Highâ€Efficiency and Longevous Sodium Ion Battery. Advanced Energy Materials, 2022, 12, .	19.5	40
45	Three-dimensionally ordered mesoporous Co3O4 decorated with Mg as bifunctional oxygen electrocatalysts for high-performance zinc-air batteries. Nano Energy, 2022, 100, 107425.	16.0	39
46	Deep-Breathing Honeycomb-like Co-Nx-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. IScience, 2020, 23, 101404.	4.1	38
47	Tungsten Carbide Encapsulated in Grape-Like N-Doped Carbon Nanospheres: One-Step Facile Synthesis for Low-Cost and Highly Active Electrocatalysts in Proton Exchange Membrane Water Electrolyzers. ACS Applied Materials & Interfaces, 2019, 11, 25123-25132.	8.0	37
48	Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries. Nano Energy, 2021, 79, 105393.	16.0	37
49	Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS Applied Materials & Interfaces, 2022, 14, 4588-4597.	8.0	37
50	Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5939-5948.	6.7	36
51	Cinnamateâ€Functionalized Cellulose Nanocrystals as UVâ€5hielding Nanofillers in Sunscreen and Transparent Polymer Films. Advanced Sustainable Systems, 2019, 3, 1800156.	5.3	34
52	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	19.5	33
53	Improved catalytic cracking performance of USY in the presence of metal contaminants by post-synthesis modification. Fuel, 2016, 178, 243-252.	6.4	30
54	Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie, 2019, 131, 14107-14113.	2.0	29

#	Article	IF	CITATIONS
55	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie - International Edition, 2021, 60, 5864-5870.	13.8	29
56	Sustainable cellulose nanomaterials for environmental remediation - Achieving clean air, water, and energy: A review. Carbohydrate Polymers, 2022, 285, 119251.	10.2	23
57	Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification. Chemical Engineering Journal, 2022, 446, 136630.	12.7	23
58	Grafting polymers from cellulose nanocrystals via surfaceâ€initiated atom transfer radical polymerization. Journal of Applied Polymer Science, 2021, 138, 51458.	2.6	20
59	Cryoâ€Electron Tomography of Highly Deformable and Adherent Solidâ€Electrolyte Interphase Exoskeleton in Liâ€Metal Batteries with Etherâ€Based Electrolyte. Advanced Materials, 2022, 34, e2108252.	21.0	20
60	Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chemical Engineering Journal, 2022, 440, 135990.	12.7	20
61	Syndioselective 3,4-Polymerization of 1-Phenyl-1,3-Butadiene by Rare-Earth Metal Catalysts. ACS Catalysis, 2020, 10, 5223-5229.	11.2	17
62	Fully π-conjugated dense topological salphen organic frameworks with atomic dispersed tetradentate cobalt sites for highâ€efficiency electrocatalytic oxygen reduction. Applied Catalysis B: Environmental, 2022, 315, 121590.	20.2	17
63	Preparation of azithromycin microcapsules by a layer-by-layer self-assembly approach and release behaviors of azithromycin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362, 135-139.	4.7	15
64	Hierarchically Nanostructured Solid‣tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	2.0	13
65	Selfâ€Assembled Facilitated Transport Membranes with Tunable Carrier Distribution for Ethylene/Ethane Separation. Advanced Functional Materials, 2021, 31, 2104349.	14.9	12
66	Surface Si decoration of ultrafine NaFeMn-Si catalyst enabling high Fe-phase electron density for effectively converting syngas to aromatics. Chemical Engineering Journal, 2022, 433, 134599.	12.7	10
67	ARGET ATRP of Triblock Copolymers (PMMA-b-PEO-b-PMMA) and Their Microstructure in Aqueous Solution. ACS Omega, 2018, 3, 15996-16004.	3.5	9
68	Stable Lithium Metal Anodes with a GaO <i>_x</i> Artificial Solid Electrolyte Interphase in Damp Air. ACS Applied Materials & Interfaces, 2021, 13, 21467-21473.	8.0	9
69	Substituent Effects of Pyridyl-methylene Cyclopentadienyl Rare-earth Metal Complexes on Styrene Polymerization. Chinese Journal of Polymer Science (English Edition), 2019, 37, 570-577.	3.8	8
70	Ternary Snâ€Tiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO 2 Reduction. Angewandte Chemie, 2020, 132, 12960-12967.	2.0	8
71	Syndioselective Polymerization of Vinylnaphthalene. Macromolecular Rapid Communications, 2019, 40, 1900061.	3.9	5
72	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie, 2021, 133, 5928-5934.	2.0	3

#	Article	IF	CITATIONS
73	Synthesis of dual-functionalized APTES-Bentonite/PVDF mixed-matrix membranes for the efficient separation of CO2/CH4 and CO2/N2. Materials Today Communications, 2022, 31, 103431.	1.9	3
74	Cryoâ€Electron Tomography of Highly Deformable and Adherent Solidâ€Electrolyte Interphase Exoskeleton in Liâ€Metal Batteries with Etherâ€Based Electrolyte (Adv. Mater. 13/2022). Advanced Materials, 2022, 34, .	21.0	2
75	In situ derived nanocomposites electrocatalysts from cobalt molybdates for hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 14977-14985.	2.2	1