
Yong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115455/publications.pdf Version: 2024-02-01

YONG ZHANG

#	Article	IF	CITATIONS
1	Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61, 1-93.	16.0	4,761
2	Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Materialia, 2009, 57, 761-772.	3.8	214
3	Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Materialia, 2008, 56, 2429-2440.	3.8	212
4	Serration and noise behaviors in materials. Progress in Materials Science, 2017, 90, 358-460.	16.0	203
5	Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys. Scripta Materialia, 2009, 60, 211-213.	2.6	170
6	Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scripta Materialia, 2008, 59, 475-478.	2.6	137
7	Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation. Acta Materialia, 2011, 59, 6048-6058.	3.8	130
8	A Highâ€Capacitance Saltâ€Free Dielectric for Selfâ€Healable, Printable, and Flexible Organic Field Effect Transistors and Chemical Sensor. Advanced Functional Materials, 2015, 25, 3745-3755.	7.8	113
9	Electrochemical corrosion characteristics and biocompatibility of nanostructured titanium for implants. Applied Surface Science, 2018, 434, 63-72.	3.1	77
10	High strength and high electrical conductivity in bulk nanograined Cu embedded with nanoscale twins. Applied Physics Letters, 2007, 91, .	1.5	61
11	Permeability measurements and modeling of topology-optimized metallic 3-D woven lattices. Acta Materialia, 2014, 81, 326-336.	3.8	40
12	Mechanical properties and deformation mechanisms of a Ni2Co1Fe1V0.5Mo0.2 medium-entropy alloy at elevated temperatures. Acta Materialia, 2021, 213, 116982.	3.8	36
13	Stress-driven grain growth in ultrafine grained Mg thin film. Scripta Materialia, 2013, 68, 424-427.	2.6	34
14	Development of Ni-based superalloys for microelectromechanical systems. Scripta Materialia, 2012, 67, 459-462.	2.6	28
15	Discerning size effect strengthening in ultrafine-grained Mg thin films. Scripta Materialia, 2014, 75, 10-13.	2.6	27
16	Fabrication and mechanical characterization of 3D woven Cu lattice materials. Materials and Design, 2015, 85, 743-751.	3.3	26
17	Gradient structure induced simultaneous enhancement of strength and ductility in AZ31 Mg alloy with twin-twin interactions. Journal of Magnesium and Alloys, 2023, 11, 2872-2882.	5.5	19
18	Properties of sputter deposited Ni-base superalloys for microelectromechanical systems. Thin Solid Films, 2014, 558, 20-23.	0.8	14

Yong Zhang

#	Article	IF	CITATIONS
19	Heterogeneous structure controlled by shear bands in partially recrystallized nano-laminated copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 226-233.	2.6	10
20	TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments. Ultramicroscopy, 2017, 175, 1-8.	0.8	7
21	The mechanism for the serrated flow induced by Suzuki segregation in a Ni alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141575.	2.6	7
22	Microstructure and Properties in Simulated Seawater of Copper-Doped Micro-arc Coatings on TC4 Alloy. Coatings, 2022, 12, 883.	1.2	6
23	Gradient Enhanced Strain Hardening and Tensile Deformability in a Gradient-Nanostructured Ni Alloy. Nanomaterials, 2021, 11, 2437.	1.9	2
24	DTEM In Situ Mechanical Testing: Defects Motion at High Strain Rates. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 209-213.	0.3	2
25	Dynamic strain ageing induced by Suzuki segregation in a Ni alloy. Materials Letters, 2021, 296, 129879.	1.3	1
26	In Situ High-Rate Mechanical Testing in the Dynamic Transmission Electron Microscope. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 25-30.	0.3	1
27	A convergence relationship between slip transmission and grain boundary migration in nanocrystalline nickel. Materials Characterization, 2021, 178, 111295.	1.9	0