Paco S Herson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breaking the fibrinolytic speed limit with microwheel coâ€delivery of tissue plasminogen activator and plasminogen. Journal of Thrombosis and Haemostasis, 2022, 20, 486-497.	3.8	13
2	Cerebral ischemia in the developing brain. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1777-1796.	4.3	14
3	Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 761-770.	4.3	67
4	Hippocampal network dysfunction as a mechanism of early-onset dementia after preeclampsia and eclampsia. Progress in Neurobiology, 2021, 199, 101938.	5.7	7
5	Association Between Chronic Inflammatory Diseases and Stroke-Associated Pneumonia $\hat{a} \in$ An Epidemiological Study. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105605.	1.6	5
6	Extinction blunts paraventricular thalamic contributions to heroin relapse. Cell Reports, 2021, 36, 109605.	6.4	16
7	Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. Journal of Controlled Release, 2021, 338, 505-526.	9.9	65
8	Down-regulation of AMPA receptors and long-term potentiation during early epileptogenesis. Epilepsy and Behavior, 2021, 124, 108320.	1.7	7
9	Functional Restoration following Global Cerebral Ischemia in Juvenile Mice following Inhibition of Transient Receptor Potential M2 (TRPM2) Ion Channels. Neural Plasticity, 2021, 2021, 1-10.	2.2	2
10	GluN2B S1303 phosphorylation by CaMKII or DAPK1: No indication for involvement in ischemia or LTP. IScience, 2021, 24, 103214.	4.1	11
11	CaMKIIα knockout protects from ischemic neuronal cell death after resuscitation from cardiac arrest. Brain Research, 2021, 1773, 147699.	2.2	5
12	Stepwise disassembly of GABAergic synapses during pathogenic excitotoxicity. Cell Reports, 2021, 37, 110142.	6.4	16
13	Influence of Time to Transport to a Higher Level Facility on the Clinical Outcomes of US Combat Casualties with TBI: A Multicenter 7-Year Study. Military Medicine, 2020, 185, e138-e145.	0.8	7
14	Experimental pediatric stroke shows age-specific recovery of cognition and role of hippocampal Nogo-A receptor signaling. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 588-599.	4.3	16
15	Calcium/Calmodulin-Dependent Kinase (CaMKII) Inhibition Protects Against Purkinje Cell Damage Following CA/CPR in Mice. Molecular Neurobiology, 2020, 57, 150-158.	4.0	12
16	Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels. Translational Stroke Research, 2020, 11, 254-266.	4.2	15
17	CaMKII versus DAPK1 Binding to GluN2B in Ischemic Neuronal Cell Death after Resuscitation from Cardiac Arrest. Cell Reports, 2020, 30, 1-8.e4.	6.4	46
18	Neonatal Ketamine Alters High-Frequency Oscillations and Synaptic Plasticity in the Subiculum But Does not Affect Sleep Macrostructure in Adolescent Rats. Frontiers in Systems Neuroscience, 2020, 14, 26.	2.5	9

#	Article	IF	CITATIONS
19	Ketamine Administration in Prehospital Combat Injured Patients With Traumatic Brain Injury: A 10-Year Report of Survival. Cureus, 2020, 12, e9248.	0.5	4
20	Acute Inflammatory Responses are Critical for Neuronal Replacement and Improved Functional Recovery Following Cerebral Ischemia. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	Circulating heparin oligosaccharides rapidly target the hippocampus in sepsis, potentially impacting cognitive functions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9208-9213.	7.1	45
22	Age-associated hippocampal volume changes in childhood arterial ischemic stroke. Child's Nervous System, 2019, 35, 295-300.	1.1	3
23	Delayed inhibition of tonic inhibition enhances functional recovery following experimental ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1005-1014.	4.3	28
24	Juvenile cerebral ischemia reveals age-dependent BDNF–TrkB signaling changes: Novel mechanism of recovery and therapeutic intervention. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2223-2235.	4.3	12
25	Analysis of the CaMKIIα and β splice-variant distribution among brain regions reveals isoform-specific differences in holoenzyme formation. Scientific Reports, 2018, 8, 5448.	3.3	43
26	Endogenous Neuronal Replacement in the Juvenile Brain Following Cerebral Ischemia. Neuroscience, 2018, 380, 1-13.	2.3	9
27	Endogenous Sex Steroids Dampen Neuroinflammation and Improve Outcome of Traumatic Brain Injury in Mice. Journal of Molecular Neuroscience, 2018, 64, 410-420.	2.3	36
28	More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulmonary Circulation, 2018, 8, 1-10.	1.7	19
29	Oligodendrocyte Progenitor Cell Proliferation and Fate after White Matter Stroke in Juvenile and Adult Mice. Developmental Neuroscience, 2018, 40, 601-616.	2.0	17
30	Cofilin-actin rod formation in neuronal processes after brain ischemia. PLoS ONE, 2018, 13, e0198709.	2.5	24
31	Cardiac Arrest Induces Ischemic Long-Term Potentiation of Hippocampal CA1 Neurons That Occludes Physiological Long-Term Potentiation. Neural Plasticity, 2018, 2018, 1-9.	2.2	9
32	Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone. ELife, 2018, 7, .	6.0	33
33	Sex differences in stroke: Challenges and opportunities. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2179-2191.	4.3	191
34	Structureâ€activity Relationship of the Transient Receptor Potential Melastatin 2 (TRPM2) and a Novel Peptide Antagonist Tatâ€M2NX: Potential Therapeutic Target in Cerebral Ischemia. FASEB Journal, 2018, 32, 824.5.	0.5	0
35	Autonomous CaMKII Activity as a Drug Target for Histological and Functional Neuroprotection after Resuscitation from Cardiac Arrest. Cell Reports, 2017, 18, 1109-1117.	6.4	45
36	Long-term depression in Purkinje neurons is persistently impaired following cardiac arrest and cardiopulmonary resuscitation in mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3053-3064.	4.3	9

#	Article	IF	CITATIONS
37	Enhanced Fibrinolysis with Magnetically Powered Colloidal Microwheels. Small, 2017, 13, 1700954.	10.0	59
38	Predicting Progression of Intracranial Arteriopathies in Childhood Stroke With Vessel Wall Imaging. Stroke, 2017, 48, 2274-2277.	2.0	38
39	The role of Tâ€ŧype calcium channels in the subiculum: to burst or not to burst?. Journal of Physiology, 2017, 595, 6327-6348.	2.9	29
40	Juvenile striatal white matter is resistant to ischemiaâ€induced damage. Glia, 2016, 64, 1972-1986.	4.9	24
41	Neuropathophysiology of Brain Injury. Anesthesiology Clinics, 2016, 34, 453-464.	1.4	89
42	Sex-Related Differences in the Risk of Hospital-Acquired Sepsis and Pneumonia Post Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2399-2404.	1.6	28
43	EEG power as a biomarker to predict the outcome after cardiac arrest and cardiopulmonary resuscitation induced global ischemia. Life Sciences, 2016, 165, 21-25.	4.3	8
44	Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neuroscience, 2016, 17, 49.	1.9	57
45	Extended therapeutic window of a novel peptide inhibitor of TRPM2 channels following focal cerebral ischemia. Experimental Neurology, 2016, 283, 151-156.	4.1	44
46	Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels. Experimental Neurology, 2016, 275, 78-83.	4.1	21
47	Arginase I Release from Activated Neutrophils Induces Peripheral Immunosuppression in a Murine Model of Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1657-1663.	4.3	37
48	(+)-Naltrexone is neuroprotective and promotes alternative activation in the mouse hippocampus after cardiac arrest/cardiopulmonary resuscitation. Brain, Behavior, and Immunity, 2015, 48, 115-122.	4.1	27
49	Alpha-2 agonist attenuates ischemic injury in spinal cord neurons. Journal of Surgical Research, 2015, 195, 21-28.	1.6	11
50	Clinical indicators of paraplegia underplay universal spinal cord neuronal injury from transient aortic occlusion. Brain Research, 2015, 1618, 55-60.	2.2	7
51	Animal models of stroke: translational potential at present and in 2050. Future Neurology, 2014, 9, 541-551.	0.5	60
52	Androgens and stroke: Good, bad or indifferent?. Experimental Neurology, 2014, 259, 10-15.	4.1	37
53	Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. Journal of Neuroimmunology, 2014, 274, 132-140.	2.3	38
54	Interruption of spinal cord microglial signaling by alpha-2 agonist dexmedetomidine in a murine model of delayed paraplegia. Journal of Vascular Surgery, 2014, 59, 1090-1097.	1.1	17

#	Article	IF	CITATIONS
55	Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 500-507.	0.8	53
56	Sex Steroids Do Not Modulate TRPM2-Mediated Injury in Females following Middle Cerebral Artery Occlusion. ENeuro, 2014, 1, ENEURO.0022-14.2014.	1.9	10
57	Biological Sex and Mechanisms of Ischemic Brain Injury. Translational Stroke Research, 2013, 4, 413-419.	4.2	46
58	Inhibition of Soluble Epoxide Hydrolase after Cardiac Arrest/Cardiopulmonary Resuscitation Induces a Neuroprotective Phenotype in Activated Microglia and Improves Neuronal Survival. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1574-1581.	4.3	28
59	Alterations in <scp>P</scp> urkinje cell <scp>GABA_A</scp> receptor pharmacology following oxygen and glucose deprivation and cerebral ischemia reveal novel contribution of β ₁ â€subunitâ€containing receptors. European Journal of Neuroscience, 2013, 37, 555-563.	2.6	13
60	Experimental Pediatric Arterial Ischemic Stroke Model Reveals Sex-specific Estrogen Signaling. Stroke, 2013, 44, 759-763.	2.0	22
61	Androgen and PARP-1 Regulation of TRPM2 Channels after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1549-1555.	4.3	67
62	Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways. Journal of Visualized Experiments, 2013, , e50758.	0.3	5
63	Sex difference in sensitivity to allopregnanolone neuroprotection in mice correlates with effect on spontaneous inhibitory post synaptic currents. Neuropharmacology, 2011, 61, 724-729.	4.1	26
64	Role of Salt-Induced Kinase 1 in Androgen Neuroprotection against Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 339-350.	4.3	36
65	Sex Differences in Neuroprotection Provided by Inhibition of TRPM2 Channels following Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2160-2168.	4.3	105
66	Regulatory B Cells Limit CNS Inflammation and Neurologic Deficits in Murine Experimental Stroke. Journal of Neuroscience, 2011, 31, 8556-8563.	3.6	249
67	SK2 Channels Are Neuroprotective for Ischemia-Induced Neuronal Cell Death. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2302-2312.	4.3	65
68	Testosterone exacerbates neuronal damage following cardiac arrest and cardiopulmonary resuscitation in mouse. Brain Research, 2010, 1357, 124-130.	2.2	28
69	Gender and the injured brain. Progress in Brain Research, 2010, 186, 177-187.	1.4	23
70	Sex, Sex Steroids, and Brain Injury. Seminars in Reproductive Medicine, 2009, 27, 229-239.	1,1	140
71	Dose-Dependent Effects of Androgens on Outcome after Focal Cerebral Ischemia in Adult Male Mice. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1454-1462.	4.3	103
72	Ischemic insult to cerebellar Purkinje cells causes diminished GABA _A receptor function and allopregnanolone neuroprotection is associated with GABA _A receptor stabilization. Journal of Neurochemistry, 2008, 107, 668-678.	3.9	41

#	Article	IF	CITATIONS
73	Neurosteroids sensitize female mice to stress. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S585-S585.	4.3	0
74	Smallâ€conductance calciumâ€activated potassium currents in mouse hyperexcitable denervated skeletal muscle. Journal of Physiology, 2001, 536, 397-407.	2.9	26