
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and morphological properties of parietal bone in patients with sagittal craniosynostosis. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104929.	1.5	4
2	Dystrophin deficiency affects human astrocyte properties and response to damage. Glia, 2022, 70, 466-490.	2.5	6
3	Cover Image, Volume 70, Issue 3. Clia, 2022, 70, .	2.5	Ο
4	Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals, 2022, 15, 828.	1.7	0
5	Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons. Frontiers in Cellular Neuroscience, 2021, 15, 742763.	1.8	15
6	Considering the Cellular Composition of Olfactory Ensheathing Cell Transplants for Spinal Cord Injury Repair: A Review of the Literature. Frontiers in Cellular Neuroscience, 2021, 15, 781489.	1.8	12
7	Modeling Normal and Pathological Ear Cartilage in vitro Using Somatic Stem Cells in Three-Dimensional Culture. Frontiers in Cell and Developmental Biology, 2020, 8, 666.	1.8	7
8	Three-dimensional environment and vascularization induce osteogenic maturation of human adipose-derived stem cells comparable to that of bone-derived progenitors. Stem Cells Translational Medicine, 2020, 9, 1651-1666.	1.6	9
9	Modelling human CNS injury with human neural stem cells in 2- and 3-Dimensional cultures. Scientific Reports, 2020, 10, 6785.	1.6	15
10	Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Research, 2020, 9, 267.	0.8	6
11	Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Research, 2020, 9, 267.	0.8	3
12	Adipose-Derived Stem Cells in Aesthetic Surgery. Aesthetic Surgery Journal, 2019, 39, 423-438.	0.9	20
13	Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Materials Science and Engineering C, 2019, 105, 110085.	3.8	20
14	Spontaneous Differentiation of Human Neural Stem Cells on Nanodiamonds. Advanced Biology, 2019, 3, 1800299.	3.0	12
15	3D Bioprinting cartilage for facial reconstruction. British Journal of Oral and Maxillofacial Surgery, 2019, 57, e88-e89.	0.4	1
16	Pulling and Pushing Stem Cells to Control Their Differentiation. Journal of Craniofacial Surgery, 2018, 29, 804-806.	0.3	10
17	Objectifying Micrognathia Using Three-Dimensional Photogrammetric Analysis. Journal of Craniofacial Surgery, 2018, 29, 2106-2109.	0.3	3
18	Plasticity of human adipose-derived stem cells – relevance to tissue repair. International Journal of Developmental Biology, 2018, 62, 431-439.	0.3	15

#	Article	IF	CITATIONS
19	An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. International Wound Journal, 2017, 14, 450-459.	1.3	70
20	Toward modeling the human nervous system in a dish: recent progress and outstanding challenges. Regenerative Medicine, 2017, 12, 15-23.	0.8	2
21	Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages. Acta Biomaterialia, 2017, 50, 450-461.	4.1	56
22	Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. Scientific Reports, 2017, 7, 7307.	1.6	48
23	Cranial bone structure in children with sagittal craniosynostosis: Relationship with surgical outcomes. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2017, 70, 1589-1597.	0.5	12
24	Towards reconstruction of epithelialized cartilages from autologous adipose tissue-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3078-3089.	1.3	10
25	Combined soft and skeletal tissue modelling of normal andÂdysmorphic midface postnatal development. Journal of Cranio-Maxillo-Facial Surgery, 2016, 44, 1777-1785.	0.7	13
26	MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ–independent fashion and during development. Scientific Reports, 2016, 6, 24251.	1.6	43
27	Nanotechnology for Stimulating Osteoprogenitor Differentiation. The Open Orthopaedics Journal, 2016, 10, 849-861.	0.1	7
28	Monitoring of Aryl hydrocarbon receptor (AhR)-mediated transcription activity in neuron-like cells differentiated from human neuroblastoma SH-SY5Y. Toxicology Letters, 2015, 238, S177.	0.4	0
29	Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. Journal of Neural Engineering, 2015, 12, 066016.	1.8	38
30	The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation. Frontiers in Neuroscience, 2015, 9, 103.	1.4	20
31	A matter of identity — Phenotype and differentiation potential of human somatic stem cells. Stem Cell Research, 2015, 15, 1-13.	0.3	30
32	Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and neuronally differentiated human neuroblastoma SH-SY5Y cells. Toxicology Mechanisms and Methods, 2015, 25, 689-697.	1.3	9
33	Culture and Transfection of Axolotl Cells. Methods in Molecular Biology, 2015, 1290, 187-196.	0.4	6
34	Derivation and Long-Term Culture of Cells from Newt Adult Limbs and Limb Blastemas. Methods in Molecular Biology, 2015, 1290, 171-185.	0.4	3
35	Elevated FGF21 Leads to Attenuated Postnatal Linear Growth in Preterm Infants Through GH Resistance in Chondrocytes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2198-E2206.	1.8	30
36	Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: A new tool for nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 279-289.	1.7	57

#	Article	IF	CITATIONS
37	Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase–AIF pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1162-1171.	1.9	52
38	Amniotic Fluid Stem Cells for the Repair of Prenatal and Perinatal Defects. , 2014, , 115-123.		1
39	The Role of Deimination as a Response to Trauma and Hypoxic Injury in the Developing CNS. , 2014, , 281-294.		1
40	Discovery of a structurally novel, drug-like and potent inhibitor of peptidylarginine deiminase. MedChemComm, 2013, 4, 1109.	3.5	10
41	A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1. PLoS ONE, 2013, 8, e77053.	1.1	53
42	Cord Blood Linâ^'CD45â^' Embryonic-Like Stem Cells Are a Heterogeneous Population That Lack Self-Renewal Capacity. PLoS ONE, 2013, 8, e67968.	1.1	15
43	Monitoring ferumoxide-labelled neural progenitor cells and lesion evolution by magnetic resonance imaging in a model of cell transplantation in cerebral ischaemia. F1000Research, 2013, 2, 252.	0.8	1
44	High Plasticity of Pediatric Adipose Tissue-Derived Stem Cells: Too Much for Selective Skeletogenic Differentiation?. Stem Cells Translational Medicine, 2012, 1, 384-395.	1.6	51
45	Autologous stem cells for personalised medicine. New Biotechnology, 2012, 29, 641-650.	2.4	30
46	Amniotic Fluid Stem Cells Increase Embryo Survival Following Injury. Stem Cells and Development, 2012, 21, 675-688.	1.1	29
47	Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 2011, 355, 205-214.	0.9	99
48	Biochemical effects of minaprine on striatal dopaminergic neurons in rats. Journal of Pharmacy and Pharmacology, 2011, 36, 48-50.	1.2	18
49	Is there a relationship between adult neurogenesis and neuron generation following injury across evolution?. European Journal of Neuroscience, 2011, 34, 951-962.	1.2	41
50	Postâ€ŧranslational regulation of Crmp in developing and regenerating chick spinal cord. Developmental Neurobiology, 2010, 70, 456-471.	1.5	16
51	Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies. Dalton Transactions, 2010, 39, 10056.	1.6	17
52	Delayed Osteoprogenitor Differentiation in Cleft-Palate Models. Cells Tissues Organs, 2010, 192, 283-291.	1.3	3
53	ASPP2 Binds Par-3 and Controls the Polarity and Proliferation of Neural Progenitors during CNS Development. Developmental Cell, 2010, 19, 126-137.	3.1	109
54	A single-point mutation in FGFR2 affects cell cycle and TgfÎ ² signalling in osteoblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 347-355.	1.8	16

#	Article	IF	CITATIONS
55	Considering the evolution of regeneration in the central nervous system. Nature Reviews Neuroscience, 2009, 10, 713-723.	4.9	252
56	Changes in progenitor populations and ongoing neurogenesis in the regenerating chick spinal cord. Developmental Biology, 2009, 332, 234-245.	0.9	23
57	In vivo magnetic resonance imaging of endogenous neuroblasts labelled with a ferumoxide–polycation complex. NeuroImage, 2009, 44, 1239-1246.	2.1	42
58	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 45-53.	2.4	21
59	Fgf2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus epithelial cell behaviour. Cerebrospinal Fluid Research, 2008, 5, 20.	0.5	14
60	Regenerative Biology and Medicine. Regenerative Medicine, 2008, 3, 477-482.	0.8	0
61	Potential use of craniosynostotic osteoprogenitors and bioactive scaffolds for bone engineering. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 199-210.	1.3	13
62	The Developing Human Spinal Cord Contains Distinct Populations of Neural Precursors. Neurodegenerative Diseases, 2006, 3, 38-44.	0.8	3
63	Changes in response to spinal cord injury with development: Vascularization, hemorrhage and apoptosis. Neuroscience, 2006, 137, 821-832.	1.1	38
64	Growth of choroid plexus epithelium vesicles in vitro depends on secretory activity. Journal of Cellular Physiology, 2006, 208, 549-555.	2.0	7
65	FGFR1 down-regulation in differentiating human brain and spinal cord neurospheres. NeuroReport, 2005, 16, 33-37.	0.6	3
66	Changes in E2F5 intracellular localization in mouse and human choroid plexus epithelium with development. International Journal of Developmental Biology, 2005, 49, 859-865.	0.3	27
67	Gene Expression during Palate Fusion <i>in vivo</i> and <i>in vitro</i> . Journal of Dental Research, 2005, 84, 526-531.	2.5	18
68	Neural Stem Cell Plasticity: Recruitment of Endogenous Populations for Regeneration. Current Neurovascular Research, 2004, 1, 215-229.	0.4	33
69	Nogo and Nogo-66 receptor in human and chick: Implications for development and regeneration. Developmental Dynamics, 2004, 231, 109-121.	0.8	42
70	Distinct neural precursors in the developing human spinal cord. International Journal of Developmental Biology, 2004, 48, 671-674.	0.3	15
71	Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord. Development Genes and Evolution, 2003, 213, 625-630.	0.4	62
72	Differential expression of fibroblast growth factor receptors in the developing murine choroid plexus. Developmental Brain Research, 2003, 141, 15-24.	2.1	31

#	Article	IF	CITATIONS
73	Changes in spinal cord regenerative ability through phylogenesis and development: Lessons to be learnt. Developmental Dynamics, 2003, 226, 245-256.	0.8	129
74	Recruitment of postmitotic neurons into the regenerating spinal cord of urodeles. Developmental Dynamics, 2003, 226, 341-348.	0.8	44
75	Expression of FGF2 in the limb blastema of two Salamandridae correlates with their regenerative capability. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2197-2205.	1.2	36
76	Blocking Endogenous FGF-2 Activity Prevents Cranial Osteogenesis. Developmental Biology, 2002, 243, 99-114.	0.9	49
77	Differential regulation of fibroblast growth factor receptors in the regenerating amphibian spinal cord in vivo. Neuroscience, 2002, 114, 837-848.	1.1	26
78	Induction of chondrogenesis in neural crest cells by mutant fibroblast growth factor receptors. Developmental Dynamics, 2002, 224, 210-221.	0.8	26
79	Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo. Development (Cambridge), 2002, 129, 2109-2119.	1.2	31
80	FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development (Cambridge), 2001, 128, 2143-2152.	1.2	85
81	FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development (Cambridge), 2001, 128, 2143-52.	1.2	27
82	FGF-2 Up-regulation and Proliferation of Neural Progenitors in the Regenerating Amphibian Spinal Cord in Vivo. Developmental Biology, 2000, 225, 381-391.	0.9	94
83	RA regulation of keratin expression and myogenesis suggests different ways of regenerating muscle in adult amphibian limbs. Journal of Cell Science, 1999, 112, 1385-1394.	1.2	20
84	RA regulation of keratin expression and myogenesis suggests different ways of regenerating muscle in adult amphibian limbs. Journal of Cell Science, 1999, 112 (Pt 9), 1385-94.	1.2	8
85	Hedgehog family member is expressed throughout regenerating and developing limbs. , 1998, 212, 352-363.		24
86	Stability and Plasticity of Neural Crest Patterning and Branchial Arch Hox Code after Extensive Cephalic Crest Rotation. Developmental Biology, 1998, 198, 82-104.	0.9	45
87	Peter Thorogood (1947–1998). Developmental Biology, 1998, 204, 1-2.	0.9	0
88	Gene Expression during Amphibian Limb Regeneration. International Review of Cytology, 1998, 180, 1-50.	6.2	71
89	Segmentation, crest prespecification and the control of facial form. European Journal of Oral Sciences, 1998, 106, 12-18.	0.7	13
90	A Role for Midline Closure in the Reestablishment of Dorsoventral Pattern Following Dorsal Hindbrain Ablation. Developmental Biology, 1997, 183, 150-165.	0.9	23

#	Article	IF	CITATIONS
91	Expression of regeneration-associated cytoskeletal proteins reveals differences and similarities between regenerating organs. , 1997, 210, 288-304.		20
92	Keratin 8 and 18 expression in mesenchymal progenitor cells of regenerating limbs is associated with cell proliferation and differentiation. , 1997, 210, 355-370.		33
93	Correlation between RA-induced apoptosis and patterning defects in regenerating fins and limbs. International Journal of Developmental Biology, 1997, 41, 529-32.	0.3	14
94	Re-examining jaw regeneration in urodeles: what have we learnt?. International Journal of Developmental Biology, 1996, 40, 807-11.	0.3	10
95	Regeneration of lower and upper jaws in urodeles is differentially affected by retinoic acid. International Journal of Developmental Biology, 1996, 40, 1161-70.	0.3	13
96	Retinoic acid-induced cell death in the wound epidermis of regenerating zebrafish fins. Developmental Dynamics, 1995, 202, 271-283.	0.8	41
97	Restoration of Normal Hox Code and Branchial Arch Morphogenesis after Extensive Deletion of Hindbrain Neural Crest. Developmental Biology, 1995, 168, 584-597.	0.9	64
98	Teratogenic and morphogenetic effects of retinoic acid on the regenerating pectoral fin in zebrafish. The Journal of Experimental Zoology, 1994, 269, 12-22.	1.4	34
99	Regenerative capability of upper and lower jaws in the newt. International Journal of Developmental Biology, 1994, 38, 479-90.	0.3	42
100	Hox genes, fin folds and symmetry. Nature, 1993, 364, 196-196.	13.7	11
101	Expression and regulation of keratins in the wound epithelium and mesenchyme of the regenerating newt limb. Progress in Clinical and Biological Research, 1993, 383A, 261-9.	0.2	3
102	Heads and tales: recent advances in craniofacial development. British Dental Journal, 1992, 173, 301-306.	0.3	8
103	Cell origin and identity in Limb regeneration and development. Clia, 1991, 4, 214-224.	2.5	47
104	A newt type II keratin restricted to normal and regenerating limbs and tails is responsive to retinoic acid. Development (Cambridge), 1991, 111, 497-507.	1.2	35
105	The monoclonal antibody 22/18 recognizes a conformational change in an intermediate filament of the newt,Notophthalmus viridescens, during limb regeneration. Cell and Tissue Research, 1990, 259, 483-493.	1.5	16
106	Transient expression of simple epithelial keratins by mesenchymal cells of regenerating newt limb. Developmental Biology, 1989, 133, 415-424.	0.9	55
107	Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. The Journal of Experimental Zoology, 1988, 247, 77-91.	1.4	113
108	An immunohistochemical study of synaptogenesis in the electric organ of Torpedo marmorata by use of antisera to vesicular and presynaptic plasma membrane components. Cell and Tissue Research, 1986, 246, 439-446.	1.5	12

#	Article	IF	CITATIONS
109	Putative Cholinergic‧pecific Gangliosides in Guinea Pig Forebrain. Journal of Neurochemistry, 1986, 46, 1888-1894.	2.1	35
110	The localization and rate of disappearance of a synaptic vesicle antigen following denervation. Cell and Tissue Research, 1985, 241, 367-372.	1.5	7
111	Cholinergic-Specific Nerve Terminal Antigens. , 1985, , 189-206.		3
112	Effect of Denervation on a Cholinergic-Specific Ganglioside Antigen (Chol-1) Present in Torpedo Electromotor Presynaptic Plasma Membranes. Journal of Neurochemistry, 1984, 42, 1085-1093.	2.1	16
113	Depletion and recovery of neuronal monoamine storage in rats of different ages treated with reserpine. Neurobiology of Aging, 1984, 5, 101-104.	1.5	37
114	Effects of dopaminergic agents on monoamine levels and motor behaviour in planaria. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1983, 74, 27-29.	0.2	33
115	Morphine tissue levels and reduction of gastrointestinal transit in rats. Gastroenterology, 1983, 85, 852-858.	0.6	59
116	Morphine is most effective on gastrointestinal propulsion in rats by intraperitoneal route: Evidence for local action. Life Sciences, 1980, 27, 2211-2217.	2.0	128
117	Monitoring ferumoxide-labelled neural progenitor cells and lesion evolution by magnetic resonance imaging in a model of cell transplantation in cerebral ischaemia. F1000Research, 0, 2, 252.	0.8	3
118	Uses of Databases in Dysmorphology. , 0, , 19-31.		0
119	Transgenic Technology and Its Role in Understanding Normal and Abnormal Mammalian Development. , 0, , 79-97.		0