Maja MilojevićRakić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination. Environmental Sciences: Processes and Impacts, 2022, 24, 265-276.	1.7	10
2	Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors. Microporous and Mesoporous Materials, 2022, 335, 111790.	2.2	6
3	How to Obtain Maximum Environmental Applicability from Natural Silicates. Catalysts, 2022, 12, 519.	1.6	8
4	Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus. Journal of Hazardous Materials, 2022, 436, 129226.	6.5	8
5	The environmental impact of potassium tungstophosphate/ZSM-5 zeolite: Insight into catalysis and adsorption processes. Microporous and Mesoporous Materials, 2021, 315, 110925.	2.2	10
6	The impact of preparation route on the performance of silver dodecatungstophosphate/ \hat{I}^2 zeolite catalysts in the ethylene production. Chemical Papers, 2021, 75, 3169-3180.	1.0	2
7	Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HI'EA zeolite composites. Journal of Environmental Chemical Engineering, 2021, 9, 106341.	3.3	11
8	Modulation of cytotoxicity by consecutive adsorption of tannic acid and pesticides on surfactant functionalized zeolites. Environmental Sciences: Processes and Impacts, 2020, 22, 2199-2211.	1.7	7
9	Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal. Science of the Total Environment, 2020, 735, 139530.	3.9	22
10	Ethanol dehydration over Keggin type tungstophosphoric acid and its potassium salts supported on carbon. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 121-137.	0.8	12
11	Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Microporous and Mesoporous Materials, 2019, 287, 234-245.	2.2	31
12	In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal. Journal of Environmental Sciences, 2019, 81, 136-147.	3.2	16
13	Effect of template type on the preparation of the emeraldine salt form of polyaniline (PANI-ES) with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide. RSC Advances, 2019, 9, 33080-33095.	1.7	15
14	Polyaniline/FeZSM-5 composites – Synthesis, characterization and their high catalytic activity for the oxidative degradation of herbicide glyphosate. Microporous and Mesoporous Materials, 2018, 267, 68-79.	2.2	25
15	The accessibility of sites active in the dissociative adsorption of aromatic hydrocarbons in FeZSM-5 zeolite. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 231-246.	0.8	13
16	12-phosphotungstic Acid Supported on BEA Zeolite Composite with Carbonized Polyaniline for Electroanalytical Sensing of Phenols in Environmental Samples. Journal of the Electrochemical Society, 2018, 165, H1013-H1020.	1.3	11
17	Enzymatic Synthesis of Highly Electroactive Oligoanilines from a <i>p</i> -Aminodiphenylamine/Aniline Mixture with Anionic Vesicles as Templates. Langmuir, 2018, 34, 9153-9166.	1.6	13
18	The influence of anionic vesicles on the oligomerization of p-aminodiphenylamine catalyzed by horseradish peroxidase and hydrogen peroxide. Synthetic Metals, 2017, 226, 89-103.	2.1	22

#	Article	IF	CITATIONS
19	Synthesis and characterization of 12-phosphotungstic acid supported on BEA zeolite. Materials Chemistry and Physics, 2017, 186, 430-437.	2.0	22
20	Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives. Chemical Papers, 2017, 71, 199-242.	1.0	52
21	12-Tungstophosphoric acid/BEA zeolite composites – Characterization and application for pesticide removal. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 225, 60-67.	1.7	22
22	Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles. Electrochimica Acta, 2017, 258, 834-841.	2.6	16
23	Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution. Microporous and Mesoporous Materials, 2013, 180, 141-155.	2.2	58
24	Investigation of adsorption and release of diclofenac sodium by modified zeolites composites. Applied Clay Science, 2013, 83-84, 322-326.	2.6	29
25	Oxidation of aniline in dopant-free template-free dilute reaction media. Materials Chemistry and Physics, 2011, 127, 501-510.	2.0	30
26	Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloids and Surfaces B: Biointerfaces, 2011, 83, 165-172.	2.5	105
27	Cationic surfactants-modified natural zeolites: improvement of the excipients functionality. Drug Development and Industrial Pharmacy, 2010, 36, 1215-1224.	0.9	29
28	Synthesis and Characterization of Conducting Self-Assembled Polyaniline Nanotubes/Zeolite Nanocomposite. Langmuir, 2009, 25, 3122-3131.	1.6	57
29	Synthesis and Characterization of Self-Assembled Polyaniline Nanotubes/Silica Nanocomposites. Journal of Physical Chemistry B, 2009, 113, 7116-7127.	1.2	71
30	The Activity of Iron-Containing Zeolitic Materials for the Catalytic Oxidation in Aqueous Solutions. Materials Science Forum, 2007, 555, 213-218.	0.3	3