Chuanqing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114526/publications.pdf

Version: 2024-02-01

109321 123424 4,017 64 35 citations h-index papers

61 g-index 64 64 64 3593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40, 1360-1364.	21.4	411
2	$\langle i \rangle$ TAC1 $\langle i \rangle$, a major quantitative trait locus controlling tiller angle in rice. Plant Journal, 2007, 52, 891-898.	5.7	281
3	Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226, 11-20.	3.2	215
4	Genetic Identification of Quantitative Trait Loci for Contents of Mineral Nutrients in Rice Grain. Journal of Integrative Plant Biology, 2009, 51, 84-92.	8.5	209
5	<i>LABA1</i> , a Domestication Gene Associated with Long, Barbed Awns in Wild Rice. Plant Cell, 2015, 27, 1875-1888.	6.6	178
6	Identification of a Drought Tolerant Introgression Line Derived from Dongxiang Common Wild Rice (O. rufipogon Griff.). Plant Molecular Biology, 2006, 62, 247-259.	3.9	140
7	Genetic control of inflorescence architecture during rice domestication. Nature Communications, 2013, 4, 2200.	12.8	134
8	A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3, 17064.	9.3	133
9	<i>GAD1</i> Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication. Plant Cell, 2016, 28, 2453-2463.	6.6	115
10	NOG1 increases grain production in rice. Nature Communications, 2017, 8, 1497.	12.8	111
11	Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375, eabg7985.	12.6	110
12	Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research, 2006, 16, 618-626.	5.5	105
13	<i><i><scp>CLUSTERED PRIMARY BRANCH</scp> 1</i>, a new allele of <i><scp>DWARF</scp>11</i>, controls panicle architecture and seed size in rice. Plant Biotechnology Journal, 2016, 14, 377-386.</i>	8.3	101
14	<scp><i>GS</i></scp> <i>6</i> , A Member of the <scp>GRAS</scp> Gene Family, Negatively Regulates Grain Size in Rice. Journal of Integrative Plant Biology, 2013, 55, 938-949.	8.5	99
15	The APETALA2-Like Transcription Factor SUPERNUMERARY BRACT Controls Rice Seed Shattering and Seed Size. Plant Cell, 2019, 31, 17-36.	6.6	93
16	<i> $<$ scp>PAY $<$ /scp>1 $<$ /i> $<$ ii improves plant architecture and enhances grain yield in rice. Plant Journal, 2015, 83, 528-536.	5 . 7	87
17	Development of Oryza rufipogon and O. sativa Introgression Lines and Assessment for Yield-related Quantitative Trait Loci. Journal of Integrative Plant Biology, 2007, 49, 871-884.	8.5	84
18	Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. Journal of Genetics and Genomics, 2011, 38, 593-601.	3.9	72

#	Article	IF	CITATIONS
19	<i>LHD1,</i> an Allele of <i>DTH8</i> /i>/ <i> Ghd8</i> , Controls Late Heading Date in Common Wild Rice (<i>Oryza rufipogon</i>) ^F . Journal of Integrative Plant Biology, 2012, 54, 790-799.	8.5	72
20	Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). Journal of Genetics and Genomics, 2010, 37, 147-157.	3.9	71
21	Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice. Molecular Plant, 2019, 12, 1075-1089.	8.3	70
22	Variation in the regulatory region of <i><scp>FZP</scp></i> causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant Journal, 2018, 96, 716-733.	5 . 7	65
23	Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nature Communications, 2018, 9, 4157.	12.8	63
24	Integrated RNA Sequencing and QTL Mapping to Identify Candidate Genes from Oryza rufipogon Associated with Salt Tolerance at the Seedling Stage. Frontiers in Plant Science, 2017, 8, 1427.	3. 6	59
25	The Effect of the Crosstalk between Photoperiod and Temperature on the Heading-Date in Rice. PLoS ONE, 2009, 4, e5891.	2.5	57
26	<i><scp>TOND1</scp></i> confers tolerance to nitrogen deficiency in rice. Plant Journal, 2015, 81, 367-376.	5.7	57
27	Genetic control of seed shattering during African rice domestication. Nature Plants, 2018, 4, 331-337.	9.3	55
28	<i>NARROW AND ROLLED LEAF 2</i> regulates leaf shape, male fertility, and seed size in rice. Journal of Integrative Plant Biology, 2016, 58, 983-996.	8.5	53
29	Additive and Overâ€dominant Effects Resulting from Epistatic Loci Are the Primary Genetic Basis of Heterosis in Rice. Journal of Integrative Plant Biology, 2009, 51, 393-408.	8.5	51
30	TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Molecular Biology, 2012, 78, 351-359.	3.9	50
31	The lipid transfer protein Os <scp>LTPL</scp> 159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnology Journal, 2020, 18, 756-769.	8.3	47
32	Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Scientific Reports, 2016, 6, 27425.	3. 3	45
33	Molecular Evolution of the TAC1 Gene from Rice (Oryza sativa L.). Journal of Genetics and Genomics, 2012, 39, 551-560.	3.9	44
34	A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nature Communications, 2020, 11, 443.	12.8	43
35	The domestication of plant architecture in African rice. Plant Journal, 2018, 94, 661-669.	5.7	39
36	Quantitative trait loci underlying domestication- and yield-related traits in an <i>Oryza sativa</i> Â× <i>Oryza rufipogon</i> advanced backcross population. Genome, 2008, 51, 692-704.	2.0	38

#	Article	IF	Citations
37	<i>TAC4</i> controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnology Journal, 2021, 19, 64-73.	8.3	38
38	Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.). Plant Science, 2011, 181, 14-22.	3.6	33
39	Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Science, 2013, 201-202, 121-127.	3.6	26
40	Identification and characterization of <i>Os<scp>EBS</scp></i> , a gene involved in enhanced plant biomass and spikelet number in rice. Plant Biotechnology Journal, 2013, 11, 1044-1057.	8.3	23
41	Characterization of a novel high-tillering dwarf 3 mutant in rice. Journal of Genetics and Genomics, 2011, 38, 411-418.	3.9	21
42	<i>HIGH-TILLERING AND DWARF 12</i> modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. Journal of Experimental Botany, 2021, 72, 1212-1224.	4.8	21
43	Wholeâ€genome <i>de novo</i> assemblies reveal extensive structural variations and dynamic organelleâ€toâ€nucleus DNA transfers in African and Asian rice. Plant Journal, 2020, 104, 596-612.	5.7	19
44	What happened during domestication of wild to cultivated rice. Crop Journal, 2021, 9, 564-576.	5.2	19
45	RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. Journal of Integrative Plant Biology, 2016, 58, 971-982.	8.5	18
46	<i>ESA1</i> Is Involved in Embryo Sac Abortion in Interspecific Hybrid Progeny of Rice. Plant Physiology, 2019, 180, 356-366.	4.8	18
47	Emergence of a Novel Chimeric Gene Underlying Grain Number in Rice. Genetics, 2017, 205, 993-1002.	2.9	15
48	Patterns of nucleotide diversity in wild and cultivated rice. Plant Systematics and Evolution, 2009, 281, 97-106.	0.9	13
49	Identification of microRNAs responding to cold stress in Dongxiang common wild rice. Genome, 2019, 62, 635-642.	2.0	12
50	Identification of an active miniature invertedâ€repeat transposable element <i><scp>mJ</scp>ing</i> in rice. Plant Journal, 2019, 98, 639-653.	5.7	11
51	Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice. Journal of Genetics and Genomics, 2022, 49, 458-468.	3.9	11
52	Quantitative evaluation of influence of PROSTRATE GROWTH 1 gene on rice canopy structure based on three-dimensional structure model. Field Crops Research, 2016, 194, 65-74.	5.1	10
53	Isolation and characterization of conserved non-coding sequences among rice (Oryza sativa L.) paralogous regions. Molecular Genetics and Genomics, 2009, 281, 11-18.	2.1	9
54	Construction of a bacterial artificial chromosome (BAC) library of common wild rice (Oryza) Tj ETQq0 0 0 rgBT /CBiotechnology Letters, 2008, 30, 555-561.	Overlock 1 2.2	0 Tf 50 67 Td 8

Biotechnology Letters, 2008, 30, 555-561.

#	Article	IF	CITATIONS
55	Evaluation of ORYZA2000 for Simulating Rice Growth of Different Genotypes at Two Latitudes. Agronomy Journal, 2017, 109, 2613-2629.	1.8	8
56	Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines. Euphytica, 2019, 215, 1.	1.2	6
57	Molecular Evolution of the Sorghum Maturity Gene Ma3. PLoS ONE, 2015, 10, e0124435.	2.5	6
58	Identification of Quantitative Trait Locus for Seed Dormancy and Expression Analysis of Four Dormancy-Related Genes in Sorghum. Tropical Plant Biology, 2015, 8, 9-18.	1.9	4
59	Utilization of Diverse Rice Ecotypes in Heterosis Breeding Breeding Science, 2002, 52, 107-113.	1.9	4
60	An Agrobacterium-mediated non-antibiotic selection-based transformation system for rice (Oryza) Tj ETQq0 0 0 Cellular and Developmental Biology - Plant, 2021, 57, 786-795.	rgBT /Ove 2.1	erlock 10 Tf 50 3
61	Construction of the physical map of the gpa7 locus reveals that a large segment was deleted during rice domestication. Plant Cell Reports, 2008, 27, 1087-1092.	5.6	2
62	A gain-of-function mutation of OsMAPK6 leads to long grain in rice. Crop Journal, 2021, 9, 1481-1481.	5.2	1
63	The genetic control of glabrous glume during African rice domestication. Journal of Genetics and Genomics, 2022, , .	3.9	1
64	Global gene expression analysis of a rice high-tillering dwarf mutant. Genes and Genomics, 2014, 36, 485-496.	1.4	0