
Adrian J Hobbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Animal models of pulmonary hypertension: Getting to the heart of the problem. British Journal of Pharmacology, 2022, 179, 811-837.	5.4	31
2	Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovascular Research, 2022, 118, 2085-2102.	3.8	23
3	Hydropersulfides (RSSH) and Nitric Oxide (NO) Signaling: Possible Effects on S-Nitrosothiols (RS-NO). Antioxidants, 2022, 11, 169.	5.1	11
4	A Series of Substituted Bis-Aminotriazines Are Activators of the Natriuretic Peptide Receptor C. Journal of Medicinal Chemistry, 2022, 65, 5495-5513.	6.4	2
5	C-type natriuretic peptide is a pivotal regulator of metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116470119.	7.1	9
6	The reaction of hydropersulfides (RSSH) with S-nitrosothiols (RS-NO) and the biological/physiological implications. Free Radical Biology and Medicine, 2022, 188, 459-467.	2.9	5
7	A comparison of the chemical biology of hydropersulfides (RSSH) with other protective biological antioxidants and nucleophiles. Nitric Oxide - Biology and Chemistry, 2021, 107, 46-57.	2.7	25
8	The role of cGMP signalling in auditory processing in health and disease. British Journal of Pharmacology, 2021, , .	5.4	3
9	Multidrug resistance proteins preferentially regulate natriuretic peptideâ€driven cGMP signalling in the heart & vasculature. British Journal of Pharmacology, 2021, , .	5.4	6
10	Innovative Anti-Inflammatory and Pro-resolving Strategies for Pulmonary Hypertension: High Blood Pressure Research Council of Australia Award 2019. Hypertension, 2021, 78, 1168-1184.	2.7	6
11	C-type natriuretic peptide co-ordinates cardiac structure and function. European Heart Journal, 2020, 41, 1006-1020.	2.2	56
12	Multiplicity of Nitric Oxide and Natriuretic Peptide Signaling in Heart Failure. Journal of Cardiovascular Pharmacology, 2020, 75, 370-384.	1.9	16
13	Vascular KATP channels protect from cardiac dysfunction and preserve cardiac metabolism during endotoxemia. Journal of Molecular Medicine, 2020, 98, 1149-1160.	3.9	2
14	Combination of cyclic nucleotide modulators with P2Y 12 receptor antagonists as antiâ€platelet therapy. Journal of Thrombosis and Haemostasis, 2020, 18, 1705-1713.	3.8	3
15	Inflammasomes: a novel therapeutic target in pulmonary hypertension?. British Journal of Pharmacology, 2019, 176, 1880-1896.	5.4	31
16	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
17	C-Type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. International Journal of Molecular Sciences, 2019, 20, 2281.	4.1	93
18	Neprilysin inhibition for pulmonary arterial hypertension: a randomized, doubleâ€blind, placeboâ€controlled, proofâ€ofâ€concept trial. British Journal of Pharmacology, 2019, 176, 1251-1267.	5.4	20

Adrian J Hobbs

#	Article	IF	CITATIONS
19	Biophysical screening methods for extracellular domain peptide receptors, application to natriuretic peptide receptor C ligands. Chemical Biology and Drug Design, 2019, 93, 1011-1020.	3.2	3
20	Endothelial C-Type Natriuretic Peptide Is a Critical Regulator of Angiogenesis and Vascular Remodeling. Circulation, 2019, 139, 1612-1628.	1.6	58
21	Nitric oxide biology & pathobiology (3rd edition) editors: Louis Ignarro & Bruce Freeman. Nitric Oxide - Biology and Chemistry, 2019, 90, 66.	2.7	6
22	The biological impact of blood pressure-associated genetic variants in the natriuretic peptide receptor C gene on human vascular smooth muscle. Human Molecular Genetics, 2018, 27, 199-210.	2.9	21
23	Potent Antiâ€Inflammatory and Proâ€Resolving Effects of Anabasum in a Human Model of Selfâ€Resolving Acute Inflammation. Clinical Pharmacology and Therapeutics, 2018, 104, 675-686.	4.7	52
24	Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7428-E7437.	7.1	33
25	Biological hydropersulfides and related polysulfides – a new concept and perspective in redox biology. FEBS Letters, 2018, 592, 2140-2152.	2.8	164
26	Guanylyl cyclase can't stand the HETE. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1608-H1610.	3.2	0
27	Prospective randomized evaluation of the watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy. International Journal of Cardiology, 2016, 219, 177-179.	1.7	32
28	Functional pharmacological characterization of SER100 in cardiovascular health and disease. British Journal of Pharmacology, 2016, 173, 3386-3401.	5.4	7
29	A Janus-Faced Role for Atrial Natriuretic Peptide in Myocardial Infarction?. Circulation Research, 2016, 119, 181-183.	4.5	0
30	Raised arterial blood pressure in neurokininâ€1 receptorâ€deficient mice (<i>NK1R</i> ^{â^'/â^'}): evidence for a neural rather than a vascular mechanism. Experimental Physiology, 2016, 101, 588-598.	2.0	4
31	The nuances of NO synthase regulation in sepsis: Could targeting BH4 be the answer?. Vascular Pharmacology, 2016, 77, 35-37.	2.1	1
32	Extending the translational potential of targeting NO/ <scp>cGMP</scp> â€regulated pathways in the CVS. British Journal of Pharmacology, 2015, 172, 1397-1414.	5.4	29
33	Modulation of cGMP Synthesis and Metabolism. Respiratory Medicine, 2015, , 355-375.	0.1	1
34	Investigation of the Role of Multidrug Resistance Proteins (MRPs) in Vascular Homeostasis. FASEB Journal, 2015, 29, 783.8.	0.5	0
35	Abstract 19478: Endothelial and Cardiomyocyte -derived C-type Natriuretic Peptide Coordinate Heart Structure and Function. Circulation, 2015, 132, .	1.6	0
36	Inhibition of Phosphodiesterase 2 Augments cGMP and cAMP Signaling to Ameliorate Pulmonary Hypertension. Circulation, 2014, 130, 496-507.	1.6	63

Adrian J Hobbs

#	Article	IF	CITATIONS
37	Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: Implications of their possible biological activity and utility. Free Radical Biology and Medicine, 2014, 77, 82-94.	2.9	340
38	Endothelial C-type natriuretic peptide maintains vascular homeostasis. Journal of Clinical Investigation, 2014, 124, 4039-4051.	8.2	125
39	Letter by Ahluwalia and Hobbs Regarding Article, "Nitrate-Nitrite-Nitric Oxide Pathway in Pulmonary Arterial Hypertension Therapeutics― Circulation, 2013, 127, e275.	1.6	0
40	Dietary Nitrate Ameliorates Pulmonary Hypertension. Circulation, 2012, 125, 2922-2932.	1.6	104
41	New perspectives for the treatment of pulmonary hypertension. British Journal of Pharmacology, 2011, 163, 125-140.	5.4	52
42	Natriuretic peptide receptorâ€3 underpins the disparate regulation of endothelial and vascular smooth muscle cell proliferation by Câ€ŧype natriuretic peptide. British Journal of Pharmacology, 2011, 164, 584-597.	5.4	47
43	Inorganic Nitrate Supplementation Lowers Blood Pressure in Humans. Hypertension, 2010, 56, 274-281.	2.7	502
44	The antiâ€atherogenic potential of Câ€ŧype natriuretic peptide: Disparate regulation of endothelial and vascular smooth muscle cell proliferation via natriuretic peptide receptorâ€C. FASEB Journal, 2010, 24, 573.4.	0.5	0
45	The Effects of Nitroxyl (HNO) on Soluble Guanylate Cyclase Activity. Journal of Biological Chemistry, 2009, 284, 21788-21796.	3.4	94
46	NO-Independent, Haem-Dependent Soluble Guanylate Cyclase Stimulators. Handbook of Experimental Pharmacology, 2009, , 277-308.	1.8	171
47	Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite. Hypertension, 2008, 51, 784-790.	2.7	885
48	Mechanisms Underlying Erythrocyte and Endothelial Nitrite Reduction to Nitric Oxide in Hypoxia. Circulation Research, 2008, 103, 957-964.	4.5	166
49	Sex differences in vascular function: implication of endothelium-derived hyperpolarizing factor. Journal of Endocrinology, 2008, 197, 447-462.	2.6	59
50	Synergy between Natriuretic Peptides and Phosphodiesterase 5 Inhibitors Ameliorates Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 861-869.	5.6	59
51	Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovascular Research, 2007, 74, 515-525.	3.8	85
52	Investigation of Vascular Responses in Endothelial Nitric Oxide Synthase/Cyclooxygenase-1 Double-Knockout Mice. Circulation, 2005, 111, 796-803.	1.6	197
53	C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14452-14457.	7.1	87
54	Natriuretic Peptide Receptor-C Regulates Coronary Blood Flow and Prevents Myocardial Ischemia/Reperfusion Injury. Circulation, 2004, 110, 1231-1235.	1.6	134

#	Article	IF	CITATIONS
55	Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide-cyclic GMP signalling. British Journal of Pharmacology, 2003, 139, 1289-1296.	5.4	63
56	Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1426-1431.	7.1	217
57	Soluble guanylate cyclase: the forgotten sibling. Trends in Pharmacological Sciences, 1997, 18, 484-491.	8.7	268