
Frank Meulewaeter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining natural factors that stimulate and inhibit cellulose:xyloglucan heteroâ€ŧransglucosylation. Plant Journal, 2021, 105, 1549-1565.	5.7	6
2	Enzymically attaching oligosaccharide-linked â€~cargoes' to cellulose and other commercial polysaccharides via stable covalent bonds. International Journal of Biological Macromolecules, 2020, 164, 4359-4369.	7.5	10
3	Three highly acidic Equisetum XTHs differ from hetero-trans-β-glucanase in donor substrate specificity and are predominantly xyloglucan homo-transglucosylases. Journal of Plant Physiology, 2020, 251, 153210.	3.5	12
4	Hetero-trans-β-Glucanase Produces Cellulose–Xyloglucan Covalent Bonds in the Cell Walls of Structural Plant Tissues and Is Stimulated by Expansin. Molecular Plant, 2020, 13, 1047-1062.	8.3	33
5	Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development. Planta, 2019, 249, 1565-1581.	3.2	11
6	Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities. BMC Plant Biology, 2017, 17, 69.	3.6	9
7	Heteroâ€ŧransâ€Î²â€glucanase, an enzyme unique to <i>Equisetum</i> plants, functionalizes cellulose. Plant Journal, 2015, 83, 753-769.	5.7	49
8	Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development. Plant and Cell Physiology, 2015, 56, 1786-1797.	3.1	21
9	Understanding the Relationship between Cotton Fiber Properties and Non-Cellulosic Cell Wall Polysaccharides. PLoS ONE, 2014, 9, e112168.	2.5	15
10	Chemical cationization of cotton fabric for improved dye uptake. Cellulose, 2014, 21, 4693-4706.	4.9	79
11	Analysis of the physical properties of developing cotton fibres. European Polymer Journal, 2014, 51, 57-68.	5.4	30
12	Accumulation of <i>N</i> -Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner Â. Plant Physiology, 2014, 165, 290-308.	4.8	25
13	Non-Cellulosic Polysaccharides from Cotton Fibre Are Differently Impacted by Textile Processing. PLoS ONE, 2014, 9, e115150.	2.5	10
14	Moisture sorption in developing cotton fibers. Cellulose, 2012, 19, 1517-1526.	4.9	21
15	Comparative Analysis of Crystallinity Changes in Cellulose I Polymers Using ATR-FTIR, X-ray Diffraction, and Carbohydrate-Binding Module Probes. Biomacromolecules, 2011, 12, 4121-4126.	5.4	148
16	Translation initiation factors elF4E and elFiso4E are required for polysome formation and regulate plant growth in tobacco. Plant Molecular Biology, 2005, 57, 749-760.	3.9	45
17	Conservation of RNA structures enables TNV and BYDV 5' and 3' elements to cooperate synergistically in cap-independent translation. Nucleic Acids Research, 2004, 32, 1721-1730.	14.5	42
18	The 5??? and 3??? extremities of the satellite tobacco necrosis virus translational enhancer domain contribute differentially to stimulation of translation. Rna. 2002. 8. 229-236.	3.5	27

Frank Meulewaeter

#	ARTICLE	IF	CITATIONS
19	SVISS - a novel transient gene silencing system for gene function discovery and validation in tobacco plants. Plant Journal, 2002, 32, 859-866.	5.7	103
20	5′- and 3′-sequences of satellite tobacco necrosis virus RNA promoting translation in tobacco. Plant Journal, 1998, 14, 169-176.	5.7	58
21	Features of the autonomous function of the translational enhancer domain of satellite tobacco necrosis virus. Rna, 1998, 4, 1347-1356.	3.5	44
22	Expression of Tobacco Necrosis Virus Open Reading Frames 1 and 2 Is Sufficient for the Replication of Satellite Tobacco Necrosis Virus. Virology, 1995, 212, 222-224.	2.4	20
23	Specificity of Satellite Activation by Tobacco Necrosis Virus Correlates with Nucleic Acid Hybridization Pattern between Helper Virus Isolates. Virology, 1993, 193, 971-973.	2.4	4
24	Genome structure of tobacco necrosis virus strain A. Virology, 1990, 177, 699-709.	2.4	62