Ernst K Schonbrunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114268/publications.pdf

Version: 2024-02-01

37 papers 1,593 citations

³⁹⁴⁴²¹
19
h-index

330143 37 g-index

38 all docs 38 docs citations

38 times ranked 2687 citing authors

#	Article	IF	CITATIONS
1	Acetyl-lysine Binding Site of Bromodomain-Containing Protein 4 (BRD4) Interacts with Diverse Kinase Inhibitors. ACS Chemical Biology, 2014, 9, 1160-1171.	3.4	188
2	Discovery of a Potential Allosteric Ligand Binding Site in CDK2. ACS Chemical Biology, 2011, 6, 492-501.	3.4	151
3	Cyclin-Dependent Kinase Inhibitor Dinaciclib Interacts with the Acetyl-Lysine Recognition Site of Bromodomains. ACS Chemical Biology, 2013, 8, 2360-2365.	3.4	132
4	Evidence That the Fosfomycin Target Cys115 in UDP-N-acetylglucosamine Enolpyruvyl Transferase (MurA) Is Essential for Product Release. Journal of Biological Chemistry, 2005, 280, 3757-3763.	3.4	117
5	Fluorinated Aromatic Amino Acids Are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions. ACS Chemical Biology, 2014, 9, 2755-2760.	3.4	7 9
6	Development of Highly Potent and Selective Diaminothiazole Inhibitors of Cyclin-Dependent Kinases. Journal of Medicinal Chemistry, 2013, 56, 3768-3782.	6.4	73
7	Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 7863-7875.	6.4	68
8	A Novel Approach to the Discovery of Smallâ€Molecule Ligands of CDK2. ChemBioChem, 2012, 13, 2128-2136.	2.6	65
9	A Novel Mechanism by Which Small Molecule Inhibitors Induce the DFG Flip in Aurora A. ACS Chemical Biology, 2012, 7, 698-706.	3.4	58
10	Dual Targeting of WEE1 and PLK1 by AZD1775 Elicits Single Agent Cellular Anticancer Activity. ACS Chemical Biology, 2017, 12, 1883-1892.	3.4	57
11	Molecular Basis for the N-Terminal Bromodomain-and-Extra-Terminal-Family Selectivity of a Dual Kinase–Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2018, 61, 9316-9334.	6.4	56
12	The Fungal Product Terreic Acid Is a Covalent Inhibitor of the Bacterial Cell Wall Biosynthetic Enzyme UDP- <i>N</i> -Acetylglucosamine 1-Carboxyvinyltransferase (MurA),. Biochemistry, 2010, 49, 4276-4282.	2.5	50
13	Structural Insights into JAK2 Inhibition by Ruxolitinib, Fedratinib, and Derivatives Thereof. Journal of Medicinal Chemistry, 2021, 64, 2228-2241.	6.4	49
14	Structural Basis of ALDH1A2 Inhibition by Irreversible and Reversible Small Molecule Inhibitors. ACS Chemical Biology, 2018, 13, 582-590.	3.4	48
15	Advances of small molecule targeting of kinases. Current Opinion in Chemical Biology, 2017, 39, 126-132.	6.1	44
16	Potent Dual BET Bromodomain-Kinase Inhibitors as Value-Added Multitargeted Chemical Probes and Cancer Therapeutics. Molecular Cancer Therapeutics, 2017, 16, 1054-1067.	4.1	40
17	BET Bromodomain Inhibitors with One-Step Synthesis Discovered from Virtual Screen. Journal of Medicinal Chemistry, 2017, 60, 4805-4817.	6.4	39
18	Synthesis and Evaluation of Eight- and Four-Membered Iminosugar Analogues as Inhibitors of Testicular Ceramide-Specific Glucosyltransferase, Testicular β-Glucosidase 2, and Other Glycosidases. Journal of Organic Chemistry, 2012, 77, 3082-3098.	3.2	38

#	Article	IF	CITATIONS
19	Ligand-mediated protein degradation reveals functional conservation among sequence variants of the CUL4-type E3 ligase substrate receptor cereblon. Journal of Biological Chemistry, 2018, 293, 6187-6200.	3.4	32
20	Differential antibacterial properties of the MurA inhibitors terreic acid and fosfomycin. Journal of Basic Microbiology, 2014, 54, 322-326.	3.3	22
21	Discovery of Diverse Smallâ€Molecule Inhibitors of Mammalian Sterile20â€like Kinaseâ€3 (MST3). ChemMedChem, 2016, 11, 1137-1144.	3.2	22
22	Structural Basis of Inhibitor Selectivity in the BRD7/9 Subfamily of Bromodomains. Journal of Medicinal Chemistry, 2020, 63, 3227-3237.	6.4	19
23	Development of Dimethylisoxazole-Attached Imidazo[1,2- <i>a</i>) pyridines as Potent and Selective CBP/P300 Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 5787-5801.	6.4	15
24	New inhibitors for the BPTF bromodomain enabled by structural biology and biophysical assay development. Organic and Biomolecular Chemistry, 2020, 18, 5174-5182.	2.8	14
25	New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition. Journal of Medicinal Chemistry, 2021, 64, 13902-13917.	6.4	14
26	An Advanced Tool To Interrogate BRD9. Journal of Medicinal Chemistry, 2016, 59, 4459-4461.	6.4	13
27	Structure–Activity Studies of <i>N</i> â€Butylâ€1â€deoxynojirimycin (<i>N</i> Bâ€DNJ) Analogues: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2. ChemMedChem, 2017, 12, 1977-1984.	f 3.2	13
28	Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2. Molecules, 2015, 20, 1643-1660.	3.8	12
29	NMR Analyses of Acetylated H2A.Z Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex. Biochemistry, 2020, 59, 1871-1880.	2.5	11
30	Differential BET Bromodomain Inhibition by Dihydropteridinone and Pyrimidodiazepinone Kinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 15772-15786.	6.4	10
31	Discovery of Dual TAF1-ATR Inhibitors and Ligand-Induced Structural Changes of the TAF1 Tandem Bromodomain. Journal of Medicinal Chemistry, 2022, 65, 4182-4200.	6.4	10
32	Design, Synthesis, and Characterization of a Fluorescence Polarization Pan-BET Bromodomain Probe. ACS Medicinal Chemistry Letters, 2018, 9, 1223-1229.	2.8	8
33	Identification and Screening of Selective WEE2 Inhibitors to Develop Nonâ€Hormonal Contraceptives that Specifically Target Meiosis. ChemistrySelect, 2019, 4, 13363-13369.	1.5	7
34	Development of WEE2 kinase inhibitors as novel non-hormonal female contraceptives that target meiosisâ€. Biology of Reproduction, 2020, 103, 368-377.	2.7	7
35	Tetrahydroindazole inhibitors of CDK2/cyclin complexes. European Journal of Medicinal Chemistry, 2021, 214, 113232.	5.5	5
36	Synthesis and structural characterization of a monocarboxylic inhibitor for GRB2 SH2 domain. Bioorganic and Medicinal Chemistry Letters, 2021, 51, 128354.	2.2	5

ERNST K SCHONBRUNN

#	Article	IF	CITATIONS
37	Dihydropyridine Lactam Analogs Targeting BET Bromodomains. ChemMedChem, 2022, 17, e202100407.	3.2	1