Dong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114034/publications.pdf

Version: 2024-02-01

201674 265206 2,741 42 45 27 citations h-index g-index papers 45 45 45 4848 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie - International Edition, 2019, 58, 736-740.	13.8	335
2	Hybrid Heterojunction Solar Cell Based on Organic–Inorganic Silicon Nanowire Array Architecture. Journal of the American Chemical Society, 2011, 133, 19408-19415.	13.7	275
3	Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications, 2019, 10, 1779.	12.8	185
4	Nobleâ€Metalâ€Free Janusâ€like Structures by Cation Exchange for Zâ€Scheme Photocatalytic Water Splitting under Broadband Light Irradiation. Angewandte Chemie - International Edition, 2017, 56, 4206-4210.	13.8	166
5	Nanowire Photoelectrochemistry. Chemical Reviews, 2019, 119, 9221-9259.	47.7	158
6	Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO ₂ Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution. Small, 2016, 12, 1640-1648.	10.0	136
7	Large-area synthesis of monolayer WSe ₂ on a SiO ₂ /Si substrate and its device applications. Nanoscale, 2015, 7, 4193-4198.	5.6	128
8	Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays. Nano Energy, 2016, 24, 87-93.	16.0	118
9	Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Research, 2016, 9, 1590-1599.	10.4	102
10	The Nature of Photocatalytic "Water Splitting―on Silicon Nanowires. Angewandte Chemie - International Edition, 2015, 54, 2980-2985.	13.8	97
11	Strong Metal–Support Interaction Boosts Activity, Selectivity, and Stability in Electrosynthesis of H ₂ O ₂ . Journal of the American Chemical Society, 2022, 144, 2255-2263.	13.7	90
12	Flexible Nearâ€Infrared Photovoltaic Devices Based on Plasmonic Hotâ€Electron Injection into Silicon Nanowire Arrays. Angewandte Chemie - International Edition, 2016, 55, 4577-4581.	13.8	64
13	Silicon nanostructures for solar-driven catalytic applications. Nano Today, 2017, 17, 96-116.	11.9	63
14	Kinetic Process of Shish Formation: From Stretched Network to Stabilized Nuclei. Macromolecules, 2015, 48, 5276-5285.	4.8	58
15	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie, 2019, 131, 746-750.	2.0	55
16	Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices. Nanoscale, 2012, 4, 4416.	5.6	53
17	pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Research, 2018, 11, 3193-3204.	10.4	53
18	Breaking the symmetry: Gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy, 2019, 60, 661-666.	16.0	52

#	Article	lF	CITATIONS
19	Plasmonic Coupling Architectures for Enhanced Photocatalysis. Advanced Materials, 2021, 33, e2005738.	21.0	51
20	The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene. Scientific Reports, 2016, 6, 32968.	3.3	47
21	Defect Engineering in Photocatalytic Methane Conversion. Small Structures, 2022, 3, 2100147.	12.0	43
22	Nonstationary Shape Estimation in Electrical Impedance Tomography Using a Parametric Level Set-Based Extended Kalman Filter Approach. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1894-1907.	4.7	40
23	Mesoporous implantable Pt/SrTiO3:C,N nanocuboids delivering enhanced photocatalytic H2-production activity via plasmon-induced interfacial electron transfer. Applied Catalysis B: Environmental, 2018, 236, 338-347.	20.2	35
24	Double-shelled Cu \langle sub \rangle 2 \langle /sub \rangle 0/MnO \langle sub \rangle x \langle /sub \rangle mesoporous hollow structure for CO \langle sub \rangle 2 \langle /sub \rangle photoreduction with enhanced stability and activity. Nanoscale, 2020, 12, 13912-13917.	5.6	31
25	Recent Advances in Porous Materials for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry Letters, 2022, 13, 1272-1282.	4.6	30
26	Pd–Ag alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. Journal of Materials Chemistry A, 2015, 3, 9390-9394.	10.3	29
27	A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. Journal of Materials Chemistry A, 2022, 10, 14857-14865.	10.3	28
28	Highly Crystalline Mesoporous Silicon Spheres for Efficient Visible Photocatalytic Hydrogen Evolution. ChemNanoMat, 2017, 3, 22-26.	2.8	27
29	Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6030-6044.	4.7	27
30	Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage. ACS Applied Materials & Damage. ACS Appl	8.0	24
31	Steering plasmonic hot electrons to realize enhanced full-spectrum photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2018, 39, 453-462.	14.0	18
32	Single-atom-based catalysts for photoelectrocatalysis: challenges and opportunities. Journal of Materials Chemistry A, 2022, 10, 5878-5888.	10.3	17
33	The thermodynamic properties of flow-induced precursor of polyethylene. Science China Chemistry, 2015, 58, 1570-1578.	8.2	16
34	Multiphase Conductivity Imaging With Electrical Impedance Tomography and B-Spline Level Set Method. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9634-9644.	4.7	15
35	Reconstruction optimization of distorted FeOOH/Ni hydroxide for enhanced oxygen evolution reaction. Materials Today Energy, 2022, 27, 101005.	4.7	12
36	Damage Tomography as a State Estimation Problem: Crack Detection Using Conductive Area Sensors. , 2019, 3, 1-4.		11

#	Article	IF	Citations
37	Relaxation propelled long period change in the extension induced crystallization of polyethylene oxide. Soft Matter, 2013, 9, 10759.	2.7	9
38	How flow affects crystallization in a heterogeneous polyethylene oxide melt. RSC Advances, 2014, 4, 9632.	3.6	7
39	The Nature of Photocatalytic "Water Splitting―on Silicon Nanowires. Angewandte Chemie, 2015, 127, 3023-3028.	2.0	7
40	Flexible Nearâ€Infrared Photovoltaic Devices Based on Plasmonic Hotâ€Electron Injection into Silicon Nanowire Arrays. Angewandte Chemie, 2016, 128, 4653-4657.	2.0	7
41	Fundamental Insights into Surface Modification of Silicon Material toward Improved Activity and Durability in Photocatalytic Hydrogen Production: A Case Study of Pre-Lithiation. Journal of Physical Chemistry C, 2021, 125, 5542-5548.	3.1	7
42	Probabilistic cracking prediction via deep learned electrical tomography. Structural Health Monitoring, 0, , 147592172110372.	7.5	6
43	Shape and topology optimization in electrical impedance tomography via moving morphable components method. Structural and Multidisciplinary Optimization, 2021, 64, 585-598.	3.5	5
44	Supershape augmented reconstruction method for electrical impedance tomography. , 2021, , .		2
45	Supershape Augmented Reconstruction Method Based on Boolean Operations in Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	2