
Haobing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4113836/publications.pdf Version: 2024-02-01

HAORINGLUL

#	Article	IF	CITATIONS
1	Dynamic grid-receptor method for regional-level near-road air quality analysis. Transportation Research, Part D: Transport and Environment, 2022, 105, 103232.	3.2	1
2	Electric vehicle market potential and associated energy and emissions reduction benefits. Applied Energy, 2022, 322, 119295.	5.1	9
3	Distributed computing for regionâ€wide line source dispersion modeling. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 331-345.	6.3	3
4	Development of roadway link screening model for regional-level near-road air quality analysis: A case study for particulate matter. Atmospheric Environment, 2020, 237, 117677.	1.9	10
5	Bayesian approach in estimating the road grade impact on vehicle speed and acceleration on freeways. Transportmetrica A: Transport Science, 2020, 16, 602-625.	1.3	5
6	Observed Characteristics and Modeled Emissions of Transit Buses on Ramps. Sustainability, 2020, 12, 2770.	1.6	1
7	A scalable energy modeling framework for electric vehicles in regional transportation networks. Applied Energy, 2020, 269, 115095.	5.1	21
8	Simulating the uncertain environmental impact of freight truck shifting programs. Atmospheric Environment, 2019, 214, 116847.	1.9	15
9	MOVES-Matrix for high-performance on-road energy and running emission rate modeling applications. Journal of the Air and Waste Management Association, 2019, 69, 1415-1428.	0.9	21
10	The impact of road grade on vehicle accelerations behavior, PM2.5 emissions, and dispersion modeling. Transportation Research, Part D: Transport and Environment, 2019, 75, 297-319.	3.2	25
11	Evaluating the Environmental Benefits of Median Bus Lanes: Microscopic Simulation Approach. Transportation Research Record, 2019, 2673, 663-673.	1.0	10
12	Impact of road grade on vehicle speed-acceleration distribution, emissions and dispersion modeling on freeways. Transportation Research, Part D: Transport and Environment, 2019, 69, 107-122.	3.2	27
13	Evaluation of Transit Ecodriving in Rural, Suburban, and Urban Environments. Transportation Research Record, 2018, 2672, 152-164.	1.0	1
14	Integrating Engine Start, Soak, Evaporative, and Truck Hoteling Emissions into MOVES-Matrix. Transportation Research Record, 2018, 2672, 111-122.	1.0	7
15	Development of road grade data using the United States geological survey digital elevation model. Transportation Research Part C: Emerging Technologies, 2018, 92, 243-257.	3.9	24
16	MOVES-Matrix and distributed computing for microscale line source dispersion analysis. Journal of the Air and Waste Management Association, 2017, 67, 763-775.	0.9	18
17	Understanding the emission impacts of high-occupancy vehicle (HOV) to high-occupancy toll (HOT) lane conversions: Experience from Atlanta, Georgia. Journal of the Air and Waste Management Association, 2017, 67, 910-922.	0.9	8
18	Eco-driving for transit: An effective strategy to conserve fuel and emissions. Applied Energy, 2017, 194, 784-797.	5.1	68

HAOBING LIU

#	Article	IF	CITATIONS
19	Energy Consumption and Emissions Modeling of Individual Vehicles. Transportation Research Record, 2017, 2627, 93-102.	1.0	21
20	Estimating Project-Level Vehicle Emissions with Vissim and MOVES-Matrix. Transportation Research Record, 2016, 2570, 107-117.	1.0	32
21	A comparative life-cycle energy and emissions analysis for intercity passenger transportation in the U.S. by aviation, intercity bus, and automobile. Transportation Research, Part D: Transport and Environment, 2016, 48, 267-283.	3.2	33
22	Performance of Multiple Alternatives to Reduce Carbon Emissions for Transit Fleets: A Real-world Perspective. Energy Procedia, 2016, 88, 908-914.	1.8	2
23	Operations and Emissions Characteristics of Light-Duty Vehicles on Ramps. Transportation Research Record, 2016, 2570, 1-11.	1.0	2
24	Developing Vehicle Classification Inputs for Project-Level MOVES Analysis. Transportation Research Record, 2015, 2503, 81-90.	1.0	13
25	Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling. Applied Energy, 2015, 154, 143-159.	5.1	89
26	Impact of license plate restriction policy on emission reduction in Hangzhou using a bottom-up approach. Transportation Research, Part D: Transport and Environment, 2015, 34, 281-292.	3.2	30
27	Exploring Operating Speeds on Urban Arterials Using Floating Car Data: Case Study in Shanghai. Journal of Transportation Engineering, 2014, 140, .	0.9	25
28	Vehicle Emission and Near-Road Air Quality Modeling for Shanghai, China. Transportation Research Record, 2013, 2340, 38-48.	1.0	45