
Magdalena Beldowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4112627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processes affecting the transformation of mercury in the coastal zone in the vicinity of two river mouths in the southern Baltic Sea. Marine Chemistry, 2022, 238, 104065.	0.9	8
2	Human impacts and their interactions in the Baltic Sea region. Earth System Dynamics, 2022, 13, 1-80.	2.7	25
3	Coastal cliff erosion as a source of toxic, essential and nonessential metals in the marine environment. Oceanologia, 2022, 64, 553-566.	1.1	2
4	Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. Environmental Science and Pollution Research, 2021, 28, 35690-35708.	2.7	25
5	The impact of sediment, fresh and marine water on the concentration of chemical elements in water of theAice-covered lagoon. Environmental Science and Pollution Research, 2021, 28, 61189-61200.	2.7	8
6	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	1.2	35
7	Mobility of mercury in soil and its transport into the sea. Environmental Science and Pollution Research, 2020, 27, 8492-8506.	2.7	21
8	Fractionation of mercury in aerosols of the southern Baltic coastal zone. Atmospheric Environment, 2020, 235, 117623.	1.9	9
9	Meteorological phenomenon as a key factor controlling variability of labile particulate mercury in rivers and its inflow into coastal zone of the sea. Environmental Research, 2020, 184, 109355.	3.7	5
10	Mercury forms in the benthic food web of a temperate coastal lagoon (southern Baltic Sea). Marine Pollution Bulletin, 2020, 153, 110968.	2.3	15
11	Variation in the Content of Different Forms of Mercury in River Catchments of the Southern Baltic Sea – Case Study. Polish Hyperbaric Research, 2020, 72, 63-72.	0.1	1
12	Temporal changes in the content of labile and stabile mercury forms in soil and their inflow to the southern Baltic Sea. Ecotoxicology and Environmental Safety, 2019, 182, 109434.	2.9	7
13	Forms of mercury in the Baltic mussel (Mytilus trossulus): Human and ecosystem health risk assessment. Environmental Research, 2019, 179, 108755.	3.7	9
14	Labile and stable mercury in Harris mud crab (Rhithropanopeus harrisii) from the southern Baltic Sea – Considerations for a role of non-native species in the food web. Marine Pollution Bulletin, 2019, 148, 116-122.	2.3	11
15	Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Marine Pollution Bulletin, 2019, 142, 361-376.	2.3	14
16	Sea-dumped ammunition as a possible source of mercury to the Baltic Sea sediments. Science of the Total Environment, 2019, 674, 363-373.	3.9	25
17	The role of benthic macrofauna in the trophic transfer of mercury in a low-diversity temperate coastal ecosystem (Puck Lagoon, southern Baltic Sea). Environmental Monitoring and Assessment, 2019, 191, 137.	1.3	31
18	Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (southern Baltic). Ecotoxicology and Environmental Safety, 2018, 157, 350-357.	2.9	18

#	Article	IF	CITATIONS
19	Watershed characteristics and climate factors effect on the temporal variability of mercury in the southern Baltic Sea rivers. Journal of Environmental Sciences, 2018, 68, 55-64.	3.2	14
20	Simple screening technique for determination of adsorbed and absorbed mercury in particulate matter in atmospheric and aquatic environment. Talanta, 2018, 182, 340-347.	2.9	39
21	Impact of intense rains and flooding on mercury riverine input to the coastal zone. Marine Pollution Bulletin, 2018, 127, 593-602.	2.3	24
22	Seasonal changes of mercury speciation in the coastal sediments. Journal of Soils and Sediments, 2018, 18, 3424-3436.	1.5	12
23	Coastal erosion—a "new―land-based source of labile mercury to the marine environment. Environmental Science and Pollution Research, 2018, 25, 28682-28694.	2.7	17
24	The variability of Hg concentration and composition of marine phytoplankton. Environmental Science and Pollution Research, 2018, 25, 30366-30374.	2.7	6
25	Mercury fractionation in marine macrofauna using thermodesorption technique: Method and its application. Talanta, 2018, 189, 534-542.	2.9	24
26	Mercury in the Diatoms of Various Ecological Formations. Water, Air, and Soil Pollution, 2018, 229, 168.	1.1	7
27	Seasonal variation in accumulation of mercury in the benthic macrofauna in a temperate coastal zone (Gulf of Gdańsk). Ecotoxicology and Environmental Safety, 2018, 164, 305-316.	2.9	17
28	The effect of land use in the catchment and meteorological conditions on the riverine transport of dissolved organic carbon into the Puck Lagoon (southern Baltic). Environmental Monitoring and Assessment, 2018, 190, 536.	1.3	5
29	Mercury in suspended matter of the Gulf of Gdańsk: Origin, distribution and transport at the land–sea interface. Marine Pollution Bulletin, 2017, 118, 354-367.	2.3	34
30	Mercury fractionation in soil and sediment samples using thermo-desorption method. Talanta, 2017, 168, 152-161.	2.9	53
31	The distribution of heavy metals and 137 Cs in the central part of the Polish maritime zone (Baltic Sea) – the area selected for wind farm acquisition. Estuarine, Coastal and Shelf Science, 2017, 198, 471-481.	0.9	12
32	Mercury concentration variability in the zooplankton of the southern Baltic coastal zone. Progress in Oceanography, 2017, 159, 73-85.	1.5	13
33	Review of Mercury Circulation Changes in the Coastal Zone of Southern Baltic Sea. , 2016, , .		4
34	Mercury concentration in phytoplankton in response to warming of an autumn – winter season. Environmental Pollution, 2016, 215, 38-47.	3.7	27
35	The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environmental Science and Pollution Research, 2016, 23, 23103-23113.	2.7	30

 $_{36}$ Species differences in total mercury concentration in gulls from the Gulf of Gdansk (Southern) Tj ETQq0 0 0 rgBT /Qverlock $_{19}^{10}$ Tf 50 62

Magdalena Beldowska

#	Article	IF	CITATIONS
37	Coastal erosion as a source of mercury into the marine environment along the Polish Baltic shore. Environmental Science and Pollution Research, 2016, 23, 16372-16382.	2.7	33
38	The influence of cold season warming on the mercury pool in coastal benthic organisms. Estuarine, Coastal and Shelf Science, 2016, 171, 99-105.	0.9	19
39	Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the southern Baltic. Water, Air, and Soil Pollution, 2016, 227, 52.	1.1	37
40	Arsenic concentrations in Baltic Sea sediments close to chemical munitions dumpsites. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 128, 114-122.	0.6	37
41	Long-term changes and distribution of mercury concentrations in surface sediments of the Gdansk Basin (Southern Baltic Sea). Journal of Soils and Sediments, 2015, 15, 2487-2497.	1.5	27
42	The Influence of Weather Anomalies on Mercury Cycling in the Marine Coastal Zone of the Southern Baltic—Future Perspective. Water, Air, and Soil Pollution, 2015, 226, 2248.	1.1	17
43	Macrophyta as a vector of contemporary and historical mercury from the marine environment to the trophic web. Environmental Science and Pollution Research, 2015, 22, 5228-5240.	2.7	37
44	Mercury in the eggs of aquatic birds from the Gulf of Gdansk and Wloclawek Dam (Poland). Environmental Science and Pollution Research, 2015, 22, 9889-9898.	2.7	21
45	The impact of land use and season on the riverine transport of mercury into the marine coastal zone. Environmental Monitoring and Assessment, 2014, 186, 7593-7604.	1.3	31
46	Mercury in Precipitation at an Urbanized Coastal Zone of the Baltic Sea (Poland). Ambio, 2014, 43, 871-877.	2.8	17
47	Styrofoam debris as a potential carrier of mercury within ecosystems. Environmental Science and Pollution Research, 2014, 21, 2263-2271.	2.7	46
48	Total, methyl and organic mercury in sediments of the Southern Baltic Sea. Marine Pollution Bulletin, 2014, 87, 388-395.	2.3	42
49	Factors influencing variability of mercury input to the southern Baltic Sea. Marine Pollution Bulletin, 2014, 86, 283-290.	2.3	48
50	Mercury loads into the sea associated with extreme flood. Environmental Pollution, 2014, 191, 93-100.	3.7	57
51	Mercury and Chlorinated Pesticides on the Highest Level of the Food Web as Exemplified by Herring from the Southern Baltic and African Penguins from the Zoo. Water, Air, and Soil Pollution, 2013, 224, 1549.	1.1	38
52	Factors controlling benzo(a)pyrene concentration in aerosols in the urbanized coastal zone. A case study: Gdynia, Poland (Southern Baltic Sea). Environmental Science and Pollution Research, 2013, 20, 4154-4163.	2.7	23
53	Waste disposal sites as sources of mercury in the atmosphere in the coastal zone of the Gulf of Gdańsk (southern Baltic Sea). Oceanological and Hydrobiological Studies, 2013, 42, 99-109.	0.3	7
54	Mercury in immature and adults Herring Gulls (Larus argentatus) wintering on the Gulf of Gdańsk area. Oceanological and Hydrobiological Studies, 2013, 42, 260-267.	0.3	17

#	Article	IF	CITATIONS
55	Mercury concentration in the sediments as a function of changing climate in coastal zone of Southern Baltic Sea – preliminary results. E3S Web of Conferences, 2013, 1, 06002.	0.2	7
56	Effect of diet on the capacity to remove mercury from the body of a penguin (Spheniscus demersus) living in the ZOO. E3S Web of Conferences, 2013, 1, 12002.	0.2	5
57	Mercury in particulate matter over Polish zone of the southern Baltic Sea. Atmospheric Environment, 2012, 46, 397-404.	1.9	45
58	Vertical Mercury, Cadmium, and Lead Distribution at Two Stratified Stations in the Southern Baltic Sea. Progress in Environmental Science, Technology and Management, 2012, , .	0.1	0
59	Distribution of mercury in different environmental compartments in the aquatic ecosystem of the coastal zone of the Southern Baltic Sea. Journal of Environmental Sciences, 2010, 22, 1144-1150.	3.2	30
60	Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea,) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 542

61	The role of air masses on iron concentrations in wet atmospheric deposition over the urbanized coastal zone of the Gulf of Gdańsk. Oceanological and Hydrobiological Studies, 2008, 37, 21-37.	0.3	8
62	Air–sea exchange of mercury vapour over the Gulf of Gdańsk and southern Baltic Sea. Journal of Marine Systems, 2001, 27, 315-324.	0.9	22