Jianmin Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/411254/jianmin-chen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

508 18,801 68 109 g-index

637 22,713 7.5 7
ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
508	Significant impactor sampling artifacts of ammonium, nitrate, and organic acids. <i>Atmospheric Environment</i> , 2022 , 274, 118985	5.3	
507	Source apportionment of PM2.5 during haze episodes in Shanghai by the PMF model with PAHs. <i>Journal of Cleaner Production</i> , 2022 , 330, 129850	10.3	4
506	An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants <i>Journal of Hazardous Materials</i> , 2022 , 428, 128221	12.8	1
505	Application of smog chambers in atmospheric process studies <i>National Science Review</i> , 2022 , 9, nwab ²	1 0 26⊳.8	3
504	Atmospheric gaseous organic acids in winter in a rural site of the North China Plain <i>Journal of Environmental Sciences</i> , 2022 , 113, 190-203	6.4	O
503	Mechanistic toxicity assessment of fine particulate matter emitted from fuel combustion via pathway-based approaches in human cells. <i>Science of the Total Environment</i> , 2022 , 806, 150214	10.2	Ο
502	Photodissociation of particulate nitrate as a source of daytime tropospheric Cl <i>Nature Communications</i> , 2022 , 13, 939	17.4	2
501	Characterization of peroxyacetyl nitrate (PAN) under different PM concentration in wintertime at a North China rural site <i>Journal of Environmental Sciences</i> , 2022 , 114, 221-232	6.4	0
500	Atmospheric measurements at Mt. Tai Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 3149-3167	6.8	1
499	Characteristics of aerosol chemistry and acidity in Shanghai after PM satisfied national guideline: Insight into future emission control <i>Science of the Total Environment</i> , 2022 , 154319	10.2	0
498	pH modifies the oxidative potential and peroxide content of biomass burning HULIS under dark aging <i>Science of the Total Environment</i> , 2022 , 155365	10.2	1
497	Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES) <i>Science of the Total Environment</i> , 2022 , 155817	10.2	
496	Overlooked Significant Impact of Trace Metals on the Bacterial Community of PM2.5 in High-Time Resolution. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035408	4.4	O
495	Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16631-16644	6.8	0
494	Addressing Unresolved Complex Mixture of I/SVOCs Emitted From Incomplete Combustion of Solid Fuels by Nontarget Analysis. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD03583	35 ^{4.4}	3
493	Secondary Inorganic Ions Characteristics in PM2.5 Along Offshore and Coastal Areas of the Megacity Shanghai. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035139	4.4	2
492	Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. <i>Environmental Science & Environmental Scienc</i>	10.3	2

(2021-2021)

491	Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15985-16000	6.8	2
490	An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. <i>National Science Review</i> , 2021 , 8, nwaa304	10.8	10
489	Direct Observation of Sulfate Explosive Growth in Wet Plumes Emitted From Typical Coal-Fired Stationary Sources. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL092071	4.9	4
488	Magnetic Particles Unintentionally Emitted from Anthropogenic Sources: Iron and Steel Plants. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 295-300	11	1
487	Chemical Fingerprinting of HULIS in Particulate Matters Emitted from Residential Coal and Biomass Combustion. <i>Environmental Science & Environmental S</i>	10.3	13
486	Intermediate Volatile Organic Compound Emissions from Residential Solid Fuel Combustion Based on Field Measurements in Rural China. <i>Environmental Science & Environmental Sci</i>	10.3	11
485	Characterizing Black Carbon and Gaseous Pollutants on the Yangtze River Across Eastern China Continent. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033488	4.4	
484	Ice-Nucleating Particle Concentrations and Sources in Rainwater Over the Third Pole, Tibetan Plateau. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033864	4.4	
483	Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. <i>Nature Communications</i> , 2021 , 12, 3159	17.4	14
482	Molecular composition and optical property of humic-like substances (HULIS) in winter-time PM2.5 in the rural area of North China Plain. <i>Atmospheric Environment</i> , 2021 , 252, 118316	5.3	7
481	Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of HO and Particulate Sulfate in the Winter North China Plain. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	4
480	Extreme Exposure Levels of PCDD/Fs Inhaled from Biomass Burning Activity for Cooking in Typical Rural Households. <i>Environmental Science & Environmental Science & Environment</i>	10.3	6
479	Performance comparison of SMPSs with soft X-ray and Kr-85 neutralizers in a humid atmosphere. Journal of Aerosol Science, 2021 , 154, 105756	4.3	1
478	Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 7343-7355	6.8	8
477	Toxicity Assessment of Nano-ZnO Exposure on the Human Intestinal Microbiome, Metabolic Functions, and Resistome Using an In Vitro Colon Simulator. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 6884-6896	10.3	5
476	Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: anthropogenic vs. meteorological influences. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8677-8692	6.8	4
475	High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. <i>Environmental Science & Environmental Science </i>	10.3	4
474	Atmospheric Nitrate Formation through Oxidation by Carbonate Radical. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1801-1811	3.2	О

473	Characterization of a Kanomax fast condensation particle counter in the sub-10 nm range. <i>Journal of Aerosol Science</i> , 2021 , 155, 105772	4.3	4
472	PM-Nitrite Heterogeneous Formation Demonstrated via a Modified Versatile Aerosol Concentration Enrichment System Coupled with Ion Chromatography. <i>Environmental Science & Technology</i> , 2021 , 55, 9794-9804	10.3	3
471	Size distributions of particle-generated hydroxyl radical (IDH) in surrogate lung fluid (SLF) solution and their potential sources. <i>Environmental Pollution</i> , 2021 , 268, 115582	9.3	5
470	On-site analysis of COVID-19 on the surfaces in wards. Science of the Total Environment, 2021, 753, 1417	'58 .2	12
469	Diverse bacterial populations of PM2.5 in urban and suburb Shanghai, China. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	5
468	Nitrous acid emission from open burning of major crop residues in mainland China. <i>Atmospheric Environment</i> , 2021 , 244, 117950	5.3	2
467	Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO₂ emissions. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1305-1323	6.8	2
466	Fuel Aromaticity Promotes Low-Temperature Nucleation Processes of Elemental Carbon from Biomass and Coal Combustion. <i>Environmental Science & Elemental Carbon from Biomass and Coal Combustion. Environmental Science & Elemental Carbon from Biomass and Coal Combustion. Environmental Science & Elemental Carbon from Biomass and Coal Combustion. Environmental Science & Elemental Carbon from Biomass and Coal Combustion. Environmental Science & Elemental Carbon from Biomass and Coal Combustion.</i>	10.3	4
465	A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): development and field characterization. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 1037-1045	4	3
464	Association of PM with Insulin Resistance Signaling Pathways on a Microfluidic Liver-Kidney Microphysiological System (LK-MPS) Device. <i>Analytical Chemistry</i> , 2021 , 93, 9835-9844	7.8	О
463	Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
462	Atmospheric Hydrogen Peroxide (H2O2) at the Foot and Summit of Mt. Tai: Variations, Sources and Sinks, and Implications for Ozone Formation Chemistry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033975	4.4	2
461	Measurement report: Biogenic volatile organic compound emission profiles of rapeseed leaf litter and its secondary organic aerosol formation potential. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 126	63 ⁸ 120	6 2 9
460	Commodity plastic burning as a source of inhaled toxic aerosols. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125820	12.8	8
459	Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 12227-12241	6.8	1
458	-Phenylenediamine Antioxidants in PM: The Underestimated Urban Air Pollutants. <i>Environmental Science & Environmental Science & Environmental Automated Science & Environmental </i>	10.3	8
457	Halogens Enhance Haze Pollution in China. Environmental Science & Enhance & Environmental Science & Enhance Haze Pollution in China. Environmental Science & Enhance & Environmental Science & Enhance & Environmental Science & Environmental Scie	86373	4
456	The roles of aqueous-phase chemistry and photochemical oxidation in oxygenated organic aerosols formation. <i>Atmospheric Environment</i> , 2021 , 266, 118738	5.3	1

455	Fine particle pH and its influencing factors during summer at Mt. Tai: Comparison between mountain and urban sites. <i>Atmospheric Environment</i> , 2021 , 261, 118607	5.3	О
454	Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season. <i>Science of the Total Environment</i> , 2021 , 789, 147956	10.2	7
453	The decay of airborne bacteria and fungi in a constant temperature and humidity test chamber. <i>Environment International</i> , 2021 , 157, 106816	12.9	3
452	Detection of gaseous dimethylamine using vocus proton-transfer-reaction time-of-flight mass spectrometry. <i>Atmospheric Environment</i> , 2020 , 243, 117875	5.3	7
451	Importance of Ammonia Gas-Particle Conversion Ratio in Haze Formation in the Rural Agricultural Environment 2020 ,		1
450	ROS-generation potential of Humic-like substances (HULIS) in ambient PM in urban Shanghai: Association with HULIS concentration and light absorbance. <i>Chemosphere</i> , 2020 , 256, 127050	8.4	10
449	Pollution levels, composition characteristics and sources of atmospheric PM in a rural area of the North China Plain during winter. <i>Journal of Environmental Sciences</i> , 2020 , 95, 172-182	6.4	10
448	Simultaneous determination of nine atmospheric amines and six inorganic ions by non-suppressed ion chromatography using acetonitrile and 18-crown-6 as eluent additive. <i>Journal of Chromatography A</i> , 2020 , 1624, 461234	4.5	5
447	Assessing the Effect of Reactive Oxygen Species and Volatile Organic Compound Profiles Coming from Certain Types of Chinese Cooking on the Toxicity of Human Bronchial Epithelial Cells. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	11
446	Marine organic matter in the remote environment of the Cape Verde islands han introduction and overview to the MarParCloud campaign. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6921-6951	6.8	14
445	Nocturnal PM2.5 explosive growth dominates severe haze in the rural North China Plain. <i>Atmospheric Research</i> , 2020 , 242, 105020	5.4	13
444	Increasing surface ozone and enhanced secondary organic carbon formation at a city junction site: An epitome of the Yangtze River Delta, China (2014-2017). <i>Environmental Pollution</i> , 2020 , 265, 114847	9.3	7
443	The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size distributions and optical properties. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2017-2030	6.8	22
442	Forward ultra-low emission for power plants via wet electrostatic precipitators and newly developed demisters: Filterable and condensable particulate matters. <i>Atmospheric Environment</i> , 2020 , 225, 117372	5.3	14
441	Significant impact of coal combustion on VOCs emissions in winter in a North China rural site. <i>Science of the Total Environment</i> , 2020 , 720, 137617	10.2	32
440	Online measurement of carbonaceous aerosols in suburban Shanghai during winter over a three-year period: Temporal variations, meteorological effects, and sources. <i>Atmospheric Environment</i> , 2020 , 226, 117408	5.3	8
439	Non-agricultural sources dominate the atmospheric NH in Xi'an, a megacity in the semi-arid region of China. <i>Science of the Total Environment</i> , 2020 , 722, 137756	10.2	29
438	Direct links between hygroscopicity and mixing state of ambient aerosols: estimating particle hygroscopicity from their single-particle mass spectra. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 627	73-6291	o ⁶

437	Sources and health risks of PM-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. <i>Journal of Environmental Sciences</i> , 2020 , 95, 240-247	6.4	6
436	Simulating the impacts of ship emissions on coastal air quality: Importance of a high-resolution emission inventory relative to cruise- and land-based observations. <i>Science of the Total Environment</i> , 2020 , 728, 138454	10.2	16
435	Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110898	7	2
434	Impact of quarantine measures on chemical compositions of PM during the COVID-19 epidemic in Shanghai, China. <i>Science of the Total Environment</i> , 2020 , 743, 140758	10.2	46
433	Size-resolved chemical composition analysis of ions produced by a commercial soft X-ray aerosol neutralizer. <i>Journal of Aerosol Science</i> , 2020 , 147, 105586	4.3	9
432	Atmospheric Photosensitization: A New Pathway for Sulfate Formation. <i>Environmental Science & Environmental Science</i>	10.3	35
431	Size-segregated characteristics of organic carbon[(OC), elemental carbon[(EC) and organic matter in particulate matter[(PM)) emitted from different types of ships in China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1549-1564	6.8	11
430	Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China. <i>Science of the Total Environment</i> , 2020 , 714, 136760	10.2	26
429	Effects of aerosol pollution on PM-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. <i>Environmental Pollution</i> , 2020 , 262, 114188	9.3	33
428	Estimation of Secondary Organic Aerosol Formation During a Photochemical Smog Episode in Shanghai, China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032033	4.4	10
427	Molecular Characterization of Organosulfates in Highly Polluted Atmosphere Using Ultra-High-Resolution Mass Spectrometry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032253	4.4	13
426	The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13735-13751	6.8	4
425	Nitrate-dominated PM_{2.5} and elevation of particle pH observed in urban Beijing during the winter of 2017. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5019-5033	6.8	32
424	Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7259-7269	6.8	11
423	Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9563-9579	6.8	11
422	Development of an automatic linear calibration method for high-resolution single-particle mass spectrometry: improved chemical species identification for atmospheric aerosols. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 4111-4121	4	1
421	Separation and quantification of imidazoles in atmospheric particles using LC-Orbitrap-MS. <i>Journal of Separation Science</i> , 2020 , 43, 577-589	3.4	5
420	Different formation mechanisms of PAH during wood and coal combustion under different temperatures. <i>Atmospheric Environment</i> , 2020 , 222, 117084	5.3	21

419	Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain. <i>Environmental Pollution</i> , 2020 , 256, 113401	9.3	17
418	Satellite-Based Estimates of Wet Ammonium (NH-N) Deposition Fluxes Across China during 2011-2016 Using a Space-Time Ensemble Model. <i>Environmental Science & Description</i> 2020, 54, 134	19-13	4 2 8
417	Inorganic composition and occult deposition of frost collected under severe polluted area in winter in the North China Plain. <i>Science of the Total Environment</i> , 2020 , 722, 137911	10.2	2
416	Production Flux and Chemical Characteristics of Spray Aerosol Generated From Raindrop Impact on Seawater and Soil. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032052	4.4	0
415	Effects of cleaner ship fuels on air quality and implications for future policy: A case study of Chongming Ecological Island in China. <i>Journal of Cleaner Production</i> , 2020 , 267, 122088	10.3	12
414	Photochemical Oxidation of Water-Soluble Organic Carbon (WSOC) on Mineral Dust and Enhanced Organic Ammonium Formation. <i>Environmental Science & Enhanced (WSOC)</i> , 2020, 54, 15631-15642	10.3	3
413	Daily CO Emission Reduction Indicates the Control of Activities to Contain COVID-19 in China. <i>Innovation(China)</i> , 2020 , 1, 100062	17.8	14
412	Chemical Characteristics and Brown Carbon Chromophores of Atmospheric Organic Aerosols Over the Yangtze River Channel: A Cruise Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD032497	4.4	5
411	Gaseous and Particulate Chlorine Emissions From Typical Iron and Steel Industry in China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD032729	4.4	5
410	Water/Methanol-Insoluble Brown Carbon Can Dominate Aerosol-Enhanced Light Absorption in Port Cities. <i>Environmental Science & Environmental Science & </i>	10.3	7
409	The pollution levels, variation characteristics, sources and implications of atmospheric carbonyls in a typical rural area of North China Plain during winter. <i>Journal of Environmental Sciences</i> , 2020 , 95, 256-2	26 :4	7
408	Tris(2,4-dibutylphenyl)phosphate: An Unexpected Abundant Toxic Pollutant Found in PM. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	15
407	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. <i>Environmental Science & Environmental Scie</i>	10.3	12
406	A More Important Role for the Ozone-S(IV) Oxidation Pathway Due to Decreasing Acidity in Clouds. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD033220	4.4	6
405	HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain. <i>Environmental Science & Environmental Science &</i>	10.3	24
404	Size-Resolved Mixing States and Sources of Amine-Containing Particles in the East China Sea. Journal of Geophysical Research D: Atmospheres, 2020 , 125, e2020JD033162	4.4	6
403	Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island. <i>Journal of Cleaner Production</i> , 2020 , 244, 118773	10.3	25
402	Characterization of particulate matter and its extinction ability during different seasons and weather conditions in Sinkiang, China: two case studies. <i>Environmental Science and Pollution Research</i> 2020, 27, 22414-22422	5.1	О

401	Pollutants emitted from typical Chinese vessels: Potential contributions to ozone and secondary organic aerosols. <i>Journal of Cleaner Production</i> , 2019 , 238, 117862	10.3	16
400	Observation of nitrate dominant PM_{2.5} and particle pH elevation in urban Beijing during the winter of 2017 2019 ,		4
399	Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. <i>Journal of Hazardous Materials</i> , 2019 , 369, 9-16	12.8	42
398	The effect and mechanism of urban fine particulate matter (PM) on horizontal transfer of plasmid-mediated antimicrobial resistance genes. <i>Science of the Total Environment</i> , 2019 , 683, 116-123	10.2	24
397	Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism. <i>Science of the Total Environment</i> , 2019 , 687, 1073	3 ⁻ 10 8 6	42
396	Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. <i>Atmospheric Environment</i> , 2019 , 213, 608-619	5.3	16
395	Formation features of nitrous acid in the offshore area of the East China Sea. <i>Science of the Total Environment</i> , 2019 , 682, 138-150	10.2	13
394	Contribution of transregional transport to particle pollution and health effects in Shanghai during 2013-2017. <i>Science of the Total Environment</i> , 2019 , 677, 564-570	10.2	13
393	Impacts of six potential HONO sources on HO budgets and SOA formation during a wintertime heavy haze period in the North China Plain. <i>Science of the Total Environment</i> , 2019 , 681, 110-123	10.2	26
392	Inherent Metals of a Phytoremediation Plant Influence Its Recyclability by Hydrothermal Liquefaction. <i>Environmental Science & Environmental Science &</i>	10.3	21
391	Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. <i>Science of the Total Environment</i> , 2019 , 674, 179-188	10.2	12
390	Size-fractionated water-soluble ions during autumn and winter: Insights into volatile ammonium formation mechanisms in Shanghai, a megacity of China. <i>Atmospheric Environment: X</i> , 2019 , 2, 100011	2.8	1
389	Cytotoxicity analysis of ambient fine particle in BEAS-2B cells on an air-liquid interface (ALI) microfluidics system. <i>Science of the Total Environment</i> , 2019 , 677, 108-119	10.2	5
388	Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. <i>Atmospheric Environment</i> , 2019 , 210, 241-252	5.3	29
387	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38
386	Air pollution characteristics in China during 2015-2016: Spatiotemporal variations and key meteorological factors. <i>Science of the Total Environment</i> , 2019 , 648, 902-915	10.2	115
385	Unexpectedly Increased Particle Emissions from the Steel Industry Determined by Wet/Semidry/Dry Flue Gas Desulfurization Technologies. <i>Environmental Science & Environmental </i>	10.3	19
384	Dark air[]quid interfacial chemistry of glyoxal and hydrogen peroxide. <i>Npj Climate and Atmospheric Science</i> , 2019 , 2,	8	12

383	Chemistry-triggered events of PM explosive growth during late autumn and winter in Shanghai, China. <i>Environmental Pollution</i> , 2019 , 254, 112864	9.3	27
382	Evolution of aqSOA from the Air-Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 10236-10245	10.3	19
381	Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12569-1258.	5 ^{6.8}	9
380	Size-segregated water-soluble N-bearing species in the land-sea boundary zone of East China. <i>Atmospheric Environment</i> , 2019 , 218, 116990	5.3	2
379	Abundant NH in China Enhances Atmospheric HONO Production by Promoting the Heterogeneous Reaction of SO with NO. <i>Environmental Science & Enp.</i> Technology, 2019 , 53, 14339-14347	10.3	36
378	Comparative Study of PAHs in PM1 and PM2.5 at a Background Site in the North China Plain. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 2281-2293	4.6	8
377	Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection. <i>Analyst, The</i> , 2019 , 145, 277-285	5	11
376	The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity. <i>Environment International</i> , 2019 , 126, 96-106	12.9	47
375	Nitrogen-containing secondary organic aerosol formation by acrolein reaction with ammonia/ammonium. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1343-1356	6.8	13
374	Marine organic matter in the remote environment of the Cape Verde Islands IAn introduction and overview to the MarParCloud campaign 2019 ,		3
373	Nitrite-Mediated Photooxidation of Vanillin in the Atmospheric Aqueous Phase. <i>Environmental Science & Environmental Science &</i>	10.3	28
372	Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12221-12234	6.8	14
371	The spatiotemporal variation and key factors of SO2 in 336 cities across China. <i>Journal of Cleaner Production</i> , 2019 , 210, 602-611	10.3	31
370	Emission factors and environmental implication of organic pollutants in PM emitted from various vessels in China. <i>Atmospheric Environment</i> , 2019 , 200, 302-311	5.3	22
369	A method for particulate matter 2.5 (PM) biotoxicity assay using luminescent bacterium. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 170, 796-803	7	8
368	Nonthermal air plasma dehydration of hydrochar improves its carbon sequestration potential and dissolved organic matter molecular characteristics. <i>Science of the Total Environment</i> , 2019 , 659, 655-663	10.2	17
367	Decarbonylation reaction of saturated and oxidized tar from pyrolysis of low aromaticity biomass boost reduction of hexavalent chromium. <i>Chemical Engineering Journal</i> , 2019 , 360, 1042-1050	14.7	11
	Profile of inhalable bacteria in PM at Mt. Tai, China: Abundance, community, and influence of air		

365	Photochemical Aging of Guaiacol by Fe(III)-Oxalate Complexes in Atmospheric Aqueous Phase. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	34
364	Impact of adsorbed nitrate on the heterogeneous conversion of SO on FeO in the absence and presence of simulated solar irradiation. <i>Science of the Total Environment</i> , 2019 , 649, 1393-1402	10.2	8
363	Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure. <i>Environmental Pollution</i> , 2018 , 236, 992-1003	9.3	8
362	Baosteel emission control significantly benefited air quality in Shanghai. <i>Journal of Environmental Sciences</i> , 2018 , 71, 127-135	6.4	6
361	Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes. <i>Environment International</i> , 2018 , 114, 280-287	12.9	25
360	Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. <i>Environmental Pollution</i> , 2018 , 237, 74-82	9.3	143
359	Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study. <i>Science of the Total Environment</i> , 2018 , 634, 1192-1204	10.2	22
358	Characterization and acid-mobilization study for typical iron-bearing clay mineral. <i>Journal of Environmental Sciences</i> , 2018 , 71, 222-232	6.4	10
357	Pollution characteristics of particulate matters emitted from outdoor barbecue cooking in urban Jinan in eastern China. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	5
356	Influences of Temperature and Metal on Subcritical Hydrothermal Liquefaction of Hyperaccumulator: Implications for the Recycling of Hazardous Hyperaccumulators. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	40
355	Carbon transmission of CO2 activated nano-MgO carbon composites enhances phosphate immobilization. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3705-3713	13	27
354	A novel process for obtaining high quality cellulose acetate from green landscaping waste. <i>Journal of Cleaner Production</i> , 2018 , 176, 338-347	10.3	22
353	Nitro and oxy-PAHs bounded in PM and PM under different weather conditions at Mount Tai in Eastern China: Sources, long-distance transport, and cancer risk assessment. <i>Science of the Total Environment</i> , 2018 , 622-623, 1400-1407	10.2	7
352	Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS. <i>Atmospheric Environment</i> , 2018 , 176, 140-147	5.3	8
351	CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization. <i>Chemical Engineering Journal</i> , 2018 , 334, 1101-1107	14.7	33
350	Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. <i>Journal of Cleaner Production</i> , 2018 , 178, 572-579	10.3	29
349	Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 1234-1243	4.4	56
348	ToF-SIMS characterization of glyoxal surface oxidation products by hydrogen peroxide: A comparison between dry and liquid samples. <i>Surface and Interface Analysis</i> , 2018 , 50, 927-938	1.5	13

347	Investigation of new particle formation at the summit of Mt. Tai, China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2243-2258	6.8	15
346	An observational study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO formation during the haze episodes. <i>Science of the Total Environment</i> , 2018 , 630, 1057-1070	10.2	35
345	Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities. <i>Environment International</i> , 2018 , 117, 33-39	12.9	76
344	Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4349-435	5 6 .8	43
343	Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing. <i>Environmental Pollution</i> , 2018 , 238, 230-237	9.3	45
342	Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China. <i>Atmospheric Environment</i> , 2018 , 182, 97-104	5.3	24
341	Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations. <i>Atmospheric Environment</i> , 2018 , 182, 296-306	5.3	50
340	Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors. <i>Journal of Environmental Sciences</i> , 2018 , 63, 28-42	6.4	19
339	Fog composition along the Yangtze River basin: Detecting emission sources of pollutants in fog water. <i>Journal of Environmental Sciences</i> , 2018 , 71, 2-12	6.4	9
338	Trash to treasure: Use flue gas SO2 to produce H2 via a photoelectrochemical process. <i>Chemical Engineering Journal</i> , 2018 , 335, 231-235	14.7	18
337	Activating Inert Alkali-Metal Ions by Electron Transfer from Manganese Oxide for Formaldehyde Abatement. <i>Chemistry - A European Journal</i> , 2018 , 24, 681-689	4.8	17
336	Emerging investigator series: heterogeneous reactions of sulfur dioxide on mineral dust nanoparticles: from single component to mixed components. <i>Environmental Science: Nano</i> , 2018 , 5, 182	1 ⁷ 1 ¹ 833	3 ¹⁸
335	Molecular distributions of dicarboxylic acids, oxocarboxylic acids and <i></i>-dicarbonyls in PM_{2.5} collected at the top of Mt. Tai, North China, during the wheat burning season of 2014. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10	6.8 741-10	19 758
334	Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China. <i>Atmospheric Environment</i> , 2018 , 190, 232-240	5.3	35
333	Investigating particles, VOCs, ROS produced from mosquito-repellent incense emissions and implications in SOA formation and human health. <i>Building and Environment</i> , 2018 , 143, 645-651	6.5	15
332	Personal Ozone Exposure and Respiratory Inflammatory Response: The Role of DNA Methylation in the Arginase-Nitric Oxide Synthase Pathway. <i>Environmental Science & Environmental Science & Environment</i>	79 13	21
331	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. <i>Science</i> , 2018 , 361, 278-281	33.3	265
330	Does interfacial photochemistry play a role in the photolysis of pyruvic acid in water?. <i>Atmospheric Environment</i> , 2018 , 191, 36-45	5.3	22

329	Adsorption of SO2 on mineral dust particles influenced by atmospheric moisture. <i>Atmospheric Environment</i> , 2018 , 191, 153-161	5.3	14
328	The influence of temperature on the heterogeneous uptake of SO on hematite particles. <i>Science of the Total Environment</i> , 2018 , 644, 1493-1502	10.2	8
327	Impact of heterogeneous uptake of nitrogen dioxide on the conversion of acetaldehyde on gamma-alumina in the absence and presence of simulated solar irradiation. <i>Atmospheric Environment</i> , 2018 , 187, 282-291	5.3	6
326	Diurnal concentrations, sources, and cancer risk assessments of PM-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments. <i>Chemosphere</i> , 2018 , 209, 147-155	8.4	24
325	Chemical Composition and Bacterial Community in Size-Resolved Cloud Water at the Summit of Mt. Tai, China. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 1-14	4.6	10
324	Trend in Fine Sulfate Concentrations and the Associated Secondary Formation Processes at an Urban Site in North China. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 1519-1530	4.6	2
323	Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai. <i>Science of the Total Environment</i> , 2018 , 615, 452-461	10.2	2
322	Characteristics of the pollutant emissions in a tunnel of Shanghai on a weekday. <i>Journal of Environmental Sciences</i> , 2018 , 71, 136-149	6.4	6
321	Chromatographic separation of glucose, xylose and arabinose from lignocellulosic hydrolysates using cation exchange resin. <i>Separation and Purification Technology</i> , 2018 , 195, 288-294	8.3	17
320	Effect of relative humidity and the presence of aerosol particles on the pinene ozonolysis. Journal of Environmental Sciences, 2018, 71, 99-107	6.4	10
319	Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. <i>Atmospheric Environment</i> , 2018 , 173, 256-264	5.3	41
318	Air quality in the middle and lower reaches of the Yangtze River channel: a cruise campaign. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14445-14464	6.8	6
317	Six sources mainly contributing to the haze episodes and health risk assessment of PM at Beijing suburb in winter 2016. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 166, 146-156	7	39
316	Primary Particulate Matter Emitted from Heavy Fuel and Diesel Oil Combustion in a Typical Container Ship: Characteristics and Toxicity. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 12943-1	29 531	42
315	Cloud scavenging of anthropogenic refractory particles at a mountain site in North China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14681-14693	6.8	20
314	Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis. <i>Environment International</i> , 2018 , 121, 1162-1171	12.9	27
313	Counteractive effects of regional transport and emission control on the formation of fine particles: a case study during the Hangzhou G20 summit. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13581-1360	06.8	27
312	Temporal variations in the hygroscopicity and mixing state of black carbon aerosols in a polluted megacity area. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 15201-15218	6.8	14

311	Production Temperature Effects on the Structure of Hydrochar-Derived Dissolved Organic Matter and Associated Toxicity. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	48
310	The changing ambient mixing ratios of long-lived halocarbons under Montreal Protocol in China. <i>Journal of Cleaner Production</i> , 2018 , 188, 774-785	10.3	17
309	Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. <i>Journal of Environmental Sciences</i> , 2018 , 71, 233-248	6.4	32
308	Fine particulate matter constituents and stress hormones in the hypothalamus-pituitary-adrenal axis. <i>Environment International</i> , 2018 , 119, 186-192	12.9	53
307	Understanding unusually high levels of peroxyacetyl nitrate (PAN) in winter in Urban Jinan, China. <i>Journal of Environmental Sciences</i> , 2018 , 71, 249-260	6.4	23
306	Online single particle measurement of fireworks pollution during Chinese New Year in Nanning. Journal of Environmental Sciences, 2017 , 53, 184-195	6.4	32
305	Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. <i>Science of the Total Environment</i> , 2017 , 583, 334-343	10.2	27
304	Physiochemical characteristics of aerosol particles in the typical microenvironment of hospital in Shanghai, China. <i>Science of the Total Environment</i> , 2017 , 580, 651-659	10.2	9
303	Investigation of diverse bacteria in cloud water at Mt. Tai, China. <i>Science of the Total Environment</i> , 2017 , 580, 258-265	10.2	27
302	Aerosol optical properties at urban and coastal sites in Shandong Province, Northern China. <i>Atmospheric Research</i> , 2017 , 188, 39-47	5.4	8
301	Ligand-Promoted Photoreductive Dissolution of Goethite by Atmospheric Low-Molecular Dicarboxylates. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 1647-1656	2.8	16
300	Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement. <i>Environmental Science & Environmental Science & Environme</i>	10.3	64
299	Heterogeneous Nucleation of Trichloroethylene Ozonation Products in the Formation of New Fine Particles. <i>Scientific Reports</i> , 2017 , 7, 42600	4.9	4
298	Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems. <i>Science Advances</i> , 2017 , 3, e1601749	14.3	128
297	Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. <i>Journal of Cleaner Production</i> , 2017 , 149, 629-635	10.3	77
296	Reaction Mechanism of 4-Chlorobiphenyl and the NO Radical: An Experimental and Theoretical Study. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 3461-3468	2.8	1
295	Surface-Enhanced Raman Spectroscopy: A Facile and Rapid Method for the Chemical Component Study of Individual Atmospheric Aerosol. <i>Environmental Science & Environmental Scie</i>	10.3	38
294	Characterization of typical metal particles during haze episodes in Shanghai, China. <i>Chemosphere</i> , 2017 , 181, 259-269	8.4	14

293	Reconciling modeling with observations of radiative absorption of black carbon aerosols. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 5932-5942	4.4	12
292	Active Tetrahedral Iron Sites of Fe2O3 Catalyzing NO Reduction by NH3. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 246-250	11	29
291	Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014 2016. <i>Atmospheric Environment</i> , 2017 , 161, 235-246	5.3	101
290	Tuning electronic states of catalytic sites enhances SCR activity of hexagonal WO3 by Mo framework substitution. <i>Catalysis Science and Technology</i> , 2017 , 7, 2467-2473	5.5	5
289	Enhanced Performance of Ceria-Based NO Reduction Catalysts by Optimal Support Effect. <i>Environmental Science & Environmental S</i>	10.3	64
288	Design and application of a novel integrated microsampling system for simultaneous collection of gas- and particle-phase semivolatile organic compounds. <i>Atmospheric Environment</i> , 2017 , 149, 1-11	5.3	5
287	Deciphering the aqueous chemistry of glyoxal oxidation with hydrogen peroxide using molecular imaging. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 20357-20366	3.6	23
286	Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation. <i>Atmospheric Research</i> , 2017 , 196, 53-61	5.4	33
285	Observations of N 2 O 5 and ClNO 2 at a polluted urban surface site in North China: High N 2 O 5 uptake coefficients and low ClNO 2 product yields. <i>Atmospheric Environment</i> , 2017 , 156, 125-134	5.3	64
284	Removal of SO2 on a nanoporous photoelectrode with simultaneous H2 production. <i>Environmental Science: Nano</i> , 2017 , 4, 834-842	7.1	25
283	Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds. <i>Faraday Discussions</i> , 2017 , 200, 59-74	3.6	24
282	Bacterial characterization in ambient submicron particles during severe haze episodes at Ji'nan, China. <i>Science of the Total Environment</i> , 2017 , 580, 188-196	10.2	55
281	Clean production pathways for regional power-generation system under emission constraints: A case study of Shanghai, China. <i>Journal of Cleaner Production</i> , 2017 , 143, 989-1000	10.3	27
2 80	A review of biomass burning: Emissions and impacts on air quality, health and climate in China. <i>Science of the Total Environment</i> , 2017 , 579, 1000-1034	10.2	551
279	Subinhibitory Concentrations of Disinfectants Promote the Horizontal Transfer of Multidrug Resistance Genes within and across Genera. <i>Environmental Science & Environmental S</i>	10.3	181
278	Light absorption enhancement of black carbon from urban haze in Northern China winter. <i>Environmental Pollution</i> , 2017 , 221, 418-426	9.3	43
277	Evaluation and potential improvements of WRF/CMAQ in simulating multi-levels air pollution in megacity Shanghai, China. <i>Stochastic Environmental Research and Risk Assessment</i> , 2017 , 31, 2513-2526	3.5	12
276	Seasonal contributions to size-resolved n-alkanes (C-C) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes. <i>Science of the Total Environment</i> , 2017 , 579, 1918-1	1928	17

275	Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China. <i>Environmental Pollution</i> , 2017 , 231, 357-366	9.3	59
274	Effects of particulate matter from straw burning on lung fibrosis in mice. <i>Environmental Toxicology and Pharmacology</i> , 2017 , 56, 249-258	5.8	23
273	Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 11,703-11,722	4.4	47
272	Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1259-12	7 6 .8	43
271	Real-Time Aerosol Optical Properties, Morphology and Mixing States under Clear, Haze and Fog Episodes in the Summer of Urban Beijing 2017 ,		1
270	Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. <i>Atmospheric Environment</i> , 2017 , 167, 625-641	5.3	31
269	Demethanation Trend of Hydrochar Induced by Organic Solvent Washing and Its Influence on Hydrochar Activation. <i>Environmental Science & Environmental </i>	10.3	29
268	Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. <i>Bioresource Technology</i> , 2017 , 245, 1184-1193	11	147
267	Uptake of Gaseous Alkylamides by Suspended Sulfuric Acid Particles: Formation of Ammonium/Aminium Salts. <i>Environmental Science & Environmental Scienc</i>	10.3	13
266	Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic materials. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1588-1596	11.3	8
265	Atmospheric emissions of Cu and Zn from coal combustion in China: Spatio-temporal distribution, human health effects, and short-term prediction. <i>Environmental Pollution</i> , 2017 , 229, 724-734	9.3	20
264	Particulate Matter Exposure and Stress Hormone Levels: A Randomized, Double-Blind, Crossover Trial of Air Purification. <i>Circulation</i> , 2017 , 136, 618-627	16.7	254
263	Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste. <i>Scientific Reports</i> , 2017 , 7, 5047	4.9	49
262	Fabrication, characterization, and stability of supported single-atom catalysts. <i>Catalysis Science and Technology</i> , 2017 , 7, 4250-4258	5.5	90
261	Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. <i>Science of the Total Environment</i> , 2017 , 605-606, 172-179	10.2	50
260	First results from light scattering enhancement factor over central Indian Himalayas during GVAX campaign. <i>Science of the Total Environment</i> , 2017 , 605-606, 124-138	10.2	11
259	Emissions of fine particulate nitrated phenols from the burning of five common types of biomass. <i>Environmental Pollution</i> , 2017 , 230, 405-412	9.3	48
258	Influence of fireworks displays on the chemical characteristics of PM in rural and suburban areas in Central and East China. <i>Science of the Total Environment</i> , 2017 , 578, 476-484	10.2	27

257	Formation, features and controlling strategies of severe haze-fog pollutions in China. <i>Science of the Total Environment</i> , 2017 , 578, 121-138	10.2	190
256	Chemical characteristics of PM/PM and influence on visual range at the summit of Mount Tai, North China. <i>Science of the Total Environment</i> , 2017 , 575, 458-466	10.2	22
255	Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014. <i>Environmental Pollution</i> , 2017 , 220, 863-872	9.3	34
254	Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass. <i>Separation and Purification Technology</i> , 2017 , 172, 100-100	6 ^{8.3}	27
253	Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 14821-14839	6.8	42
252	Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4957-4988	6.8	34
251	Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5253-5270	6.8	32
250	Fungi diversity in PM_{2. 5} and PM₁ at the summit of Mt. Tai: abundance, size distribution, and seasonal variation. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11247-11260	6.8	17
249	Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5079-5093	6.8	18
248	Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7277-7290	6.8	23
247	Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7481-7493	6.8	28
246	Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9885-9896	6.8	38
245	Mixed Chloride Aerosols and their Atmospheric Implications: A Review. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 878-887	4.6	18
244	Influence of Cloud/Fog on Atmospheric VOCs in the Free Troposphere: A Case Study at Mount Tai in Eastern China. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 2401-2412	4.6	9
243	Sodium Rivals Silver as Single-Atom Active Centers for Catalyzing Abatement of Formaldehyde. <i>Environmental Science & Environmental Science & Environm</i>	10.3	42
242	A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions. <i>Journal of Cleaner Production</i> , 2016 , 112, 1330-1349	10.3	166
241	Significant increase of summertime ozone at Mt. Tai in Central Eastern China: 2003Ø015 2016 ,		2
240	Catalytic hydrothermal liquefaction of rice straw in water/ethanol mixtures for high yields of monomeric phenols using reductive CuZnAl catalyst. <i>Fuel Processing Technology</i> , 2016 , 154, 1-6	7.2	26

239	Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. <i>Atmospheric Environment</i> , 2016 , 143, 1-14	5.3	58
238	Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. <i>Atmospheric Environment</i> , 2016 , 145, 115-127	5.3	54
237	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10336-9	16.4	42
236	The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere. <i>Atmospheric Research</i> , 2016 , 181, 95-105	5.4	22
235	A conceptual framework for mixing structures in individual aerosol particles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 13,784-13,798	4.4	78
234	Synthesis, characterization and adsorption capacity of magnetic carbon composites activated by CO2: implication for the catalytic mechanisms of iron salts. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18942-18951	13	25
233	Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2285-2298	6.8	58
232	Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2971-2	983	43
231	Significant increase of summertime ozone at Mount Tai in Central Eastern China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10637-10650	6.8	132
230	Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14527-14543	6.8	69
229	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO₂. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 675-689	6.8	52
228	Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 12551-12565	6.8	17
227	Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5399-5411	6.8	58
226	Identification of concentrations and sources of PM2.5-bound PAHs in North China during haze episodes in 2013. <i>Air Quality, Atmosphere and Health</i> , 2016 , 9, 823-833	5.6	22
225	Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013. <i>Atmospheric Environment</i> , 2016 , 124, 156-165	5.3	46
224	Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. <i>Atmospheric Environment</i> , 2016 , 140, 94-105	5.3	30
223	Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain. <i>Science of the Total Environment</i> , 2016 , 557-558, 520-30	10.2	33
222	Measurements of nitrous acid (HONO) in urban area of Shanghai, China. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 5818-29	5.1	17

221	Monophenols separation from monosaccharides and acids by two-stage nanofiltration and reverse osmosis in hydrothermal liquefaction hydrolysates. <i>Journal of Membrane Science</i> , 2016 , 504, 141-152	9.6	18
220	The active sites of supported silver particle catalysts in formaldehyde oxidation. <i>Chemical Communications</i> , 2016 , 52, 9996-9	5.8	22
219	Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 244-252	5.8	6
218	Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. <i>Journal of Cleaner Production</i> , 2016 , 112, 1302-1311	10.3	91
217	Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. <i>Carbon</i> , 2016 , 99, 338-347	10.4	84
216	Improved performance of supported single-atom catalysts via increased surface active sites. <i>Catalysis Communications</i> , 2016 , 75, 74-77	3.2	22
215	Radiative absorption enhancement from coatings on black carbon aerosols. <i>Science of the Total Environment</i> , 2016 , 551-552, 51-6	10.2	70
214	Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology. <i>Environmental Pollution</i> , 2016 , 211, 20-7	9.3	75
213	Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction. <i>RSC Advances</i> , 2016 , 6, 15260-15270	3.7	27
212	Preventing smog crises in China and globally. <i>Journal of Cleaner Production</i> , 2016 , 112, 1261-1271	10.3	61
211	The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9367-76	3.6	13
210	An estimation of CO 2 emission via agricultural crop residue open field burning in China from 1996 to 2013. <i>Journal of Cleaner Production</i> , 2016 , 112, 2625-2631	10.3	99
209	Aromatic Hydrocarbons and Halocarbons at a Mountaintop in Southern China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 478-491	4.6	7
208	Distribution and Sources of Air pollutants in the North China Plain Based on On-Road Mobile Measurements 2016 ,		1
207	Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 1025-1037	4	21
206	Characteristics of bacterial community in fog water at Mt. Tai: similarity and disparity under polluted and non-polluted fog episodes 2016 ,		2
205	Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. <i>Environmental Science & Environmental Science & Envir</i>	10 ^{0.3}	43
204	Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. <i>Bioresource Technology</i> , 2016 , 220, 471-478	11	58

203	Separation of high-purity syringol and acetosyringone from rice straw-derived bio-oil by combining the basification-acidification process and column chromatography. <i>Electrophoresis</i> , 2016 , 37, 2522-253	o ^{3.6}	7	
202	Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China. <i>Science of the Total Environment</i> , 2016 , 571, 1454-66	10.2	72	
201	Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. <i>Atmospheric Environment</i> , 2016 , 145, 1-9	5.3	34	
200	Self-Protection Mechanism of Hexagonal WO-Based DeNO Catalysts against Alkali Poisoning. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	37	
199	Effects of amines on particle growth observed in new particle formation events. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 324-335	4.4	41	
198	Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai. <i>Atmospheric Environment</i> , 2015 , 123, 315-326	5.3	62	
197	Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8348-51	16.4	74	
196	Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques. <i>Bioresource Technology</i> , 2015 , 193, 156-63	11	71	
195	Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau. <i>Journal of Environmental Sciences</i> , 2015 , 29, 165-77	6.4	27	
194	The mechanism and kinetic model on the OH-initiated degradation of acetofenate in the atmosphere. <i>Atmospheric Environment</i> , 2015 , 103, 357-364	5.3	3	
193	Investigation on the Physical and Chemical Properties of Hydrochar and Its Derived Pyrolysis Char for Their Potential Application: Influence of Hydrothermal Carbonization Conditions. <i>Energy & Energy &</i>	4.1	45	
192	Modification in light absorption cross section of laboratory-generated black carbon-brown carbon particles upon surface reaction and hydration. <i>Atmospheric Environment</i> , 2015 , 116, 253-261	5.3	13	
191	Environmental performances of hydrochar-derived magnetic carbon composite affected by its carbonaceous precursor. <i>RSC Advances</i> , 2015 , 5, 60713-60722	3.7	29	
190	Atmospheric degradation of lindane and 1,3-dichloroacetone in the gas phase. Studies at the EUPHORE simulation chamber. <i>Chemosphere</i> , 2015 , 138, 112-9	8.4	12	
189	Levels, indoor-outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia. <i>Chemosphere</i> , 2015 , 135, 31-7	8.4	15	
188	Interactions between Heterogeneous Uptake and Adsorption of Sulfur Dioxide and Acetaldehyde on Hematite. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4001-8	2.8	24	
187	Two-stage nanofiltration process for high-value chemical production from hydrolysates of lignocellulosic biomass through hydrothermal liquefaction. <i>Separation and Purification Technology</i> , 2015 , 147, 276-283	8.3	27	
186	Role of Hydrochar Properties on the Porosity of Hydrochar-based Porous Carbon for Their Sustainable Application. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 833-840	8.3	72	

185	Macroalgae for biofuels production: Progress and perspectives. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 47, 427-437	16.2	219
184	Atmospheric chemistry of oxygenated volatile organic compounds: impacts on air quality and climate. <i>Chemical Reviews</i> , 2015 , 115, 3984-4014	68.1	258
183	Effect of Formaldehyde on the Heterogeneous Reaction of Nitrogen Dioxide on Alumina. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 9317-24	2.8	11
182	HONO and its potential source particulate nitrite at an urban site in North China during the cold season. <i>Science of the Total Environment</i> , 2015 , 538, 93-101	10.2	42
181	PM 2.5 pollution episode and its contributors from 2011 to 2013 in urban Shanghai, China. <i>Atmospheric Environment</i> , 2015 , 123, 298-305	5.3	40
180	Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control. <i>Environmental Science & Environmental Scienc</i>	10.3	58
179	Mechanistic and kinetic studies on OH-initiated atmospheric oxidation degradation of benzo pyrene in the presence of O2 and NO(x). <i>Chemosphere</i> , 2015 , 119, 387-393	8.4	24
178	Size-resolved effective density of urban aerosols in Shanghai. <i>Atmospheric Environment</i> , 2015 , 100, 133-	1 ,4 9	38
177	Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai. <i>Atmospheric Environment</i> , 2015 , 123, 407-414	5.3	10
176	Highly Dense Isolated Metal Atom Catalytic Sites: Dynamic Formation and In Situ Observations. <i>Chemistry - A European Journal</i> , 2015 , 21, 17397-402	4.8	30
175	Strong atmospheric new particle formation in winter in urban Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1769-1781	6.8	116
174	Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11341-11353	6.8	54
173	Mixing state and sources of submicron regional background aerosols in the northern Qinghaillibet Plateau and the influence of biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13365-1337	6.8	25
172	Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: regional sources and cloud processing. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8987-9002	6.8	51
171	Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 9049-9062	6.8	64
170	FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphereEtmosphere chemical exchange. <i>Geoscientific Model Development</i> , 2015 , 8, 3765-3784	6.3	49
169	N-acetylcysteine attenuates cigaret smoke-induced pulmonary exacerbation in a mouse model of emphysema. <i>Inhalation Toxicology</i> , 2015 , 27, 802-9	2.7	4
168	Evolution of biomass burning smoke particles in the dark. <i>Atmospheric Environment</i> , 2015 , 120, 244-252	5.3	27

167	Theoretical study for OH radical-initiated atmospheric oxidation of ethyl acrylate. <i>Chemosphere</i> , 2015 , 119, 626-633	8.4	21
166	Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere. <i>Science of the Total Environment</i> , 2015 , 511, 369-80	10.2	51
165	Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. <i>Bioresource Technology</i> , 2015 , 182, 160-168	11	47
164	Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. <i>Atmospheric Environment</i> , 2015 , 101, 294-302	5.3	85
163	Do vehicular emissions dominate the source of C6-C8 aromatics in the megacity Shanghai of eastern China?. <i>Journal of Environmental Sciences</i> , 2015 , 27, 290-7	6.4	12
162	Rate coefficients for the reaction of ozone with 2- and 3-carene. <i>Chemical Physics Letters</i> , 2015 , 621, 71-77	2.5	9
161	Spectral Light Absorption of Ambient Aerosols in Urban Beijing during Summer: An Intercomparison of Measurements from a Range of Instruments. <i>Aerosol and Air Quality Research</i> , 2015 , 15, 1178-1187	4.6	12
160	Novel and High-Performance Magnetic Carbon Composite Prepared from Waste Hydrochar for Dye Removal. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 969-977	8.3	106
159	Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. <i>Bioresource Technology</i> , 2014 , 154, 209-14	11	252
158	Reaction pathway for reactivation and aging of paraoxon-inhibited-acetylcholinesterase: A QM/MM study. <i>Computational and Theoretical Chemistry</i> , 2014 , 1035, 44-50	2	7
157	Airborne submicron particulate (PM1) pollution in Shanghai, China: chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. <i>Science of the Total Environment</i> , 2014 , 473-474, 199-206	10.2	73
156	Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. <i>Science of the Total Environment</i> , 2014 , 496, 443-452	10.2	46
155	Analysis of human breath samples of lung cancer patients and healthy controls with solid-phase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC IGC). Analytical Methods, 2014 , 6, 6841	3.2	33
154	Indoor PM2.5 and its chemical composition during a heavy hazefog episode at Jinan, China. <i>Atmospheric Environment</i> , 2014 , 99, 641-649	5.3	35
153	Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: a computational study. <i>Environmental Science & Environmental Science & Envi</i>	10.3	77
152	Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai. <i>Journal of Environmental Sciences</i> , 2014 , 26, 1894-902	6.4	51
151	Observations of linear dependence between sulfate and nitrate in atmospheric particles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 341-361	4.4	40
150	Online hygroscopicity and chemical measurement of urban aerosol in Shanghai, China. <i>Atmospheric Environment</i> , 2014 , 95, 318-326	5.3	28

149	Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	119
148	Computational evidence for the detoxifying mechanism of epsilon class glutathione transferase toward the insecticide DDT. <i>Environmental Science & Environmental Science & Env</i>	10.3	44
147	Severe haze episodes and seriously polluted fog water in Ji'nan, China. <i>Science of the Total Environment</i> , 2014 , 493, 133-7	10.2	64
146	Characteristics and relevant remote sources of black carbon aerosol in Shanghai. <i>Atmospheric Research</i> , 2014 , 135-136, 159-171	5.4	33
145	Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China. <i>Science of the Total Environment</i> , 2014 , 481, 377-91	10.2	29
144	Mechanistic and kinetic studies on the OH-initiated atmospheric oxidation of fluoranthene. <i>Science of the Total Environment</i> , 2014 , 490, 639-46	10.2	18
143	Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation. <i>Atmospheric Environment</i> , 2014 , 94, 626-636	5.3	26
142	A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. <i>Carbon</i> , 2014 , 77, 627-636	10.4	197
141	Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11353-11365	6.8	27
140	Variations of cloud condensation nuclei (CCN) and aerosol activity during fogflaze episode: a case study from Shanghai. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12499-12512	6.8	32
139	A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6417-6426	6.8	97
138	Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8105-8118	6.8	64
137	The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9451-9467	6.8	43
136	Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai. <i>Atmospheric Pollution Research</i> , 2014 , 5, 639-647	4.5	28
135	Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 1044-1059	4.4	52
134	Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 301-313	4	59
133	Selective Extraction of Bio-oil from Hydrothermal Liquefaction of Salix psammophila by Organic Solvents with Different Polarities through Multistep Extraction Separation. <i>BioResources</i> , 2014 , 9,	1.3	39
132	Using hourly measurements to explore the role of secondary inorganic aerosol in PM2.5 during haze and fog in Hangzhou, China. <i>Advances in Atmospheric Sciences</i> , 2014 , 31, 1427-1434	2.9	45

(2013-2014)

131	Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. <i>RSC Advances</i> , 2014 , 4, 63620-63626	3.7	63
130	Sources of variation in simulated ecosystem carbon storage capacity from the 5th Climate Model Intercomparison Project (CMIP5). <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2014 , 66, 22568	3.3	13
129	The Impact of Nonlocal Ammonia on Submicron Particulate Matter and Visibility Degradation in Urban Shanghai. <i>Advances in Meteorology</i> , 2014 , 2014, 1-12	1.7	8
128	Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China. <i>Journal of Environmental Sciences</i> , 2014 , 26, 2412-22	6.4	8
127	Fog Formation in Cold Season in JiBan, China: Case Analyses with Application of HYSPLIT Model. <i>Advances in Meteorology</i> , 2014 , 2014, 1-8	1.7	3
126	Hygroscopicity and optical properties of alkylaminium sulfates. <i>Journal of Environmental Sciences</i> , 2014 , 26, 37-43	6.4	8
125	Size Distribution and Optical Properties of Ambient Aerosols during Autumn in Orleans, France. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 744-755	4.6	2
124	Hydrothermal Liquefaction of Water Hyacinth: Product Distribution and Identification. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2013 , 35, 1349-1357	1.6	14
123	Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign. <i>Atmospheric Environment</i> , 2013 , 64, 263-269	5.3	52
122	Measurements of surface cloud condensation nuclei and aerosol activity in downtown Shanghai. <i>Atmospheric Environment</i> , 2013 , 69, 354-361	5.3	29
121	Consecutive transport of anthropogenic air masses and dust storm plume: Two case events at Shanghai, China. <i>Atmospheric Research</i> , 2013 , 127, 22-33	5.4	46
120	Aerosol single scattering albedo affected by chemical composition: An investigation using CRDS combined with MARGA. <i>Atmospheric Research</i> , 2013 , 124, 149-157	5.4	22
119	Correction to Microscopic Evaluation of Trace Metals in Cloud Droplets in an Acid Precipitation Region. <i>Environmental Science & Environmental Science</i>	10.3	5
118	Determination of organic pollutants in coking wastewater by dispersive liquid-liquid microextraction/GC/MS. <i>Journal of Separation Science</i> , 2013 , 36, 1644-51	3.4	19
117	Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region. <i>Environmental Science & Environmental Science & Environment</i>	10.3	43
116	Reaction of NO(2) with selected conjugated alkenes. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 14132-	40 .8	7
115	Transesterification of Jatropha Oil to Biodiesel by Using Catalyst Containing Ca(C3H7O3)2 as a Solid Base Catalyst. <i>Advanced Materials Research</i> , 2013 , 666, 93-102	0.5	3
114	Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5655-5669	6.8	109

113	Effects of Ammonia and Amines on Heterogeneous Oxidation of Carbonyl Sulfide on Hematite. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 2027-2034	3.8	2
112	A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3931-3944	6.8	45
111	Hydrothermal Liquefaction of Desert Shrub Salix psammophila to High Value-added Chemicals and Hydrochar with Recycled Processing Water. <i>BioResources</i> , 2013 , 8,	1.3	37
110	Urban Aerosol Characteristics during the World Expo 2010 in Shanghai. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 36-48	4.6	13
109	Agricultural Fires and Their Potential Impacts on Regional Air Quality over China. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 992-1001	4.6	41
108	Source and deposition of polycyclic aromatic hydrocarbons to Shanghai, China. <i>Journal of Environmental Sciences</i> , 2012 , 24, 116-23	6.4	19
107	Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China. Journal of Environmental Sciences, 2012 , 24, 131-41	6.4	17
106	CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. <i>Journal of Hazardous Materials</i> , 2012 , 215-216, 25-31	12.8	47
105	A simplified electrospray ionization source based on electrostatic field induction for mass spectrometric analysis of droplet samples. <i>Analyst, The</i> , 2012 , 137, 5743-8	5	7
104	Solubility of iron from combustion source particles in acidic media linked to iron speciation. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	57
103	Evolution of the mixing state of fine aerosols during haze events in Shanghai. <i>Atmospheric Research</i> , 2012 , 104-105, 193-201	5.4	62
102	Measurements of surface aerosol optical properties in winter of Shanghai. <i>Atmospheric Research</i> , 2012 , 109-110, 25-35	5.4	54
101	Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 8359-8375	6.8	112
100	Conducting polymers in environmental analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 39, 163-179	14.6	90
99	Liquefaction of Macroalgae Enteromorpha prolifera in Sub-/Supercritical Alcohols: Direct Production of Ester Compounds. <i>Energy & Energy & 2012</i> , 26, 2342-2351	4.1	100
98	Single particle analysis of amines in ambient aerosol in Shanghai. <i>Environmental Chemistry</i> , 2012 , 9, 202	3.2	47
97	A parameterization of low visibilities for hazy days in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4935-4950	6.8	102
96	Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai. Atmospheric Chemistry and Physics, 2012 , 12, 693-707	6.8	80

(2010-2012)

95	Columnar Optical Depth and Vertical Distribution of Aerosols over Shanghai. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 320-330	4.6	4
94	Aerosol Size Spectra and Particle Formation Events at Urban Shanghai in Eastern China. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1362-1372	4.6	33
93	Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime. <i>Atmospheric Research</i> , 2011 , 99, 353-364	5.4	40
92	Monitoring optical properties of aerosols with cavity ring-down spectroscopy. <i>Journal of Aerosol Science</i> , 2011 , 42, 277-284	4.3	22
91	Size-resolved and bulk activation properties of aerosols in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3835-3846	6.8	95
90	An Improved Oddy Test Using Metal Films. <i>Studies in Conservation</i> , 2011 , 56, 138-153	0.6	8
89	Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide. <i>Journal of Environmental Sciences</i> , 2011 , 23, 51-9	6.4	9
88	Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor. <i>Atmospheric Environment</i> , 2011 , 45, 2349-2355	5.3	66
87	Fog water chemistry in Shanghai. Atmospheric Environment, 2011, 45, 4034-4041	5.3	48
86	Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. <i>Atmospheric Environment</i> , 2011 , 45, 5131-5137	5.3	203
85	Hygroscopicity of ambient submicron particles in urban Hangzhou, China. <i>Frontiers of Environmental Science and Engineering in China</i> , 2011 , 5, 342-347		12
84	Characterization of polycyclic aromatic hydrocarbons in fog-rain events. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 2988-93		30
83	Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. <i>Environmental Science & Environmental Science & Environment</i>	10.3	160
82	Dimethyl Sulfide Photocatalytic Degradation in a Light-Emitting-Diode Continuous Reactor: Kinetic and Mechanistic Study. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 7977-7984	3.9	54
81	Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 2011 , 6, 02-	4061.9	86
80	Insights into Ammonium Particle-to-Gas Conversion: Non-sulfate Ammonium Coupling with Nitrate and Chloride. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 589-595	4.6	49
79	Chemical characterization of aerosols over the Atlantic Ocean and the Pacific Ocean during two cruises in 2007 and 2008. <i>Journal of Geophysical Research</i> , 2010 , 115,		21
78	Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	79

77	Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil. <i>Energy & amp; Fuels</i> , 2010 , 24, 4054-4061	4.1	421
76	Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2663-2689	6.8	151
75	Real-time, single-particle measurements of ambient aerosols in Shanghai. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2010 , 5, 331-341		2
74	Physical characterization of aerosol particles during the Chinese New Year firework events. <i>Atmospheric Environment</i> , 2010 , 44, 5191-5198	5.3	85
73	A Large Scale Separation of Taxanes from the Bark Extract of Taxus yunnanesis and 1H- and 13C-NMR Assignments for 7-epi-10-Deacetyltaxol. <i>Chinese Journal of Chemistry</i> , 2010 , 19, 82-90	4.9	6
72	Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2BiO2 nanocomposites generating excellent degradation activity of RhB dye. <i>Applied Catalysis B: Environmental</i> , 2010 , 95, 197-207	21.8	137
71	Agricultural Fire Impacts on the Air Quality of Shanghai during Summer Harvesttime. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 95-101	4.6	52
70	Hygroscopicity of Inorganic Aerosols: Size and Relative Humidity Effects on the Growth Factor. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 255-264	4.6	76
69	Synthesis of small crystal zeolite beta in a biphasic H2OLTABElcohol system. <i>Materials Letters</i> , 2009 , 63, 343-345	3.3	12
68	Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. <i>Atmospheric Environment</i> , 2009 , 43, 228-237	5.3	73
67	Direct quantification of organic acids in aerosols by desorption electrospray ionization mass spectrometry. <i>Atmospheric Environment</i> , 2009 , 43, 2717-2720	5.3	25
66	Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: Mixing state and formation mechanism. <i>Atmospheric Environment</i> , 2009 , 43, 3876-3882	5.3	91
65	Laboratory simulation of SO2 heterogeneous reactions on hematite surface under different SO2 concentrations. <i>Journal of Environmental Sciences</i> , 2009 , 21, 1103-7	6.4	4
64	Determination of alkyl polycyclic aromatic hydrocarbons in dustfall by supercritical fluid extraction followed by gas chromatography/mass spectrum. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2009 , 82, 189-93	2.7	11
63	A multifunctional HTDMA system with a robust temperature control. <i>Advances in Atmospheric Sciences</i> , 2009 , 26, 1235-1240	2.9	15
62	Direct quantification of PAHs in biomass burning aerosols by desorption electrospray ionization mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2009 , 281, 31-36	1.9	23
61	Particulate nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai. <i>Environmental Science & Environmental Science &</i>	10.3	79
60	Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. <i>Chemosphere</i> , 2009 , 74, 501-7	8.4	104

(2007-2009)

59	Photoinduced Formation of Fe(III)Bulfato Complexes on the Surface of Fe2O3 and Their Photochemical Performance. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11316-11322	3.8	14
58	Distribution and source of alkyl polycyclic aromatic hydrocarbons in dustfall in Shanghai, China: the effect on the coastal area. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 187-92		18
57	A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. <i>Atmospheric Environment</i> , 2008 , 42, 8432-8441	5.3	163
56	Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. <i>Environmental Science & Environmental Science</i>	10.3	321
55	Mesoporous bismuth titanate with visible-light photocatalytic activity. <i>Chemical Communications</i> , 2008 , 4977-9	5.8	44
54	Electrodeposited polyaniline as a fiber coating for solid-phase microextraction of organochlorine pesticides from water. <i>Journal of Separation Science</i> , 2008 , 31, 2839-45	3.4	48
53	Synthesis and Structural Studies of 1-Deoxybaccatin VI Derivatives. <i>Chinese Journal of Chemistry</i> , 2008 , 26, 1870-1878	4.9	3
52	Rapid analysis of SVOC in aerosols by desorption electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 450-4	3.5	24
51	Characteristics of trace elements and lead isotope ratios in PM(2.5) from four sites in Shanghai. <i>Journal of Hazardous Materials</i> , 2008 , 156, 36-43	12.8	112
50	Flavonoid triglycosides from the seeds of Camellia oleifera Abel. <i>Chinese Chemical Letters</i> , 2008 , 19, 13	1 8.1 31	8 16
49	Polythiophene as a novel fiber coating for solid-phase microextraction. <i>Journal of Chromatography</i>		
	A, 2008 , 1198-1199, 7-13	4.5	52
48	A, 2008, 1198-1199, 7-13 Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. Environmental Science & Environmental Scien	10.3	
	Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. <i>Environmental</i>		
48	Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. <i>Environmental Science & Camp; Technology</i> , 2007 , 41, 6484-90 Heterogeneous Uptake and Oxidation of SO2 on Iron Oxides. <i>Journal of Physical Chemistry C</i> , 2007 ,	10.3	21
48 47	Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. <i>Environmental Science & Description (March 1988)</i> Heterogeneous Uptake and Oxidation of SO2 on Iron Oxides. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6077-6085 Benz[a]anthracene Heterogeneous Photochemical Reaction on the Surface of TiO2 Particles. <i>Acta</i>	10.3	21
48 47 46	Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. <i>Environmental Science & Dournal of Physical Chemistry C</i> , 2007, 111, 6077-6085 Benz[a]anthracene Heterogeneous Photochemical Reaction on the Surface of TiO2 Particles. <i>Acta Physico-chimica Sinica</i> , 2007, 23, 1531-1536 Heterogeneous chemistry of organic acids on soot surfaces. <i>Journal of Physical Chemistry A</i> , 2007,	3.8	21 172 9
48 47 46 45	Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. <i>Environmental Science & Designe & </i>	10.3 3.8 2.8	21 172 9 23

Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. *Journal of the American Chemical Society*, **2007**, 129, 13894-904²¹⁶ 41 The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric 40 5.3 399 Environment, 2006, 40, 2935-2952 A comparison of dust properties between China continent and Korea, Japan in East Asia. 39 5.3 49 Atmospheric Environment, **2006**, 40, 5787-5797 Polycyclic aromatic hydrocarbons in dust from computers: one possible indoor source of human 38 38 5.3 exposure. Atmospheric Environment, 2006, 40, 6956-6965 Determination of PAHs in dust from Shanghai by optimized SFE and GC/MS. Annali Di Chimica, 2006, 37 7 96.669-80 Synthesis and Antitumor Activity of 20-O-Linked Succinate-Based Camptothecin Ester Derivatives. 36 0.8 Letters in Drug Design and Discovery, 2006, 3, 83-86 Diastereomers of dibromo-7-epi-10-deacetylcephalomannine: crowded and cytotoxic taxanes 8.3 72 35 exhibit halogen bonds. Journal of Medicinal Chemistry, 2006, 49, 1891-9 Heterogeneous reactions of sulfur dioxide on typical mineral particles. Journal of Physical Chemistry 3.4 110 34 B, 2006, 110, 12588-96 Conversion of taxane glycosides to 10-deacetylbaccatin III. Natural Product Research, 2006, 20, 119-24 2.3 7 33 Heterogeneous reactions of methylglyoxal in acidic media: implications for secondary organic 10.3 156 32 aerosol formation. Environmental Science & Environment Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at 31 8.4 42 ambient temperature. Chemosphere, 2006, 65, 2282-8 Synthesis and crystal structure of 7,9-dideacetyl-1-deoxybaccatinVI. Journal of Chemical 30 0.5 Crystallography, 2006, 36, 337-341 Distribution and source of polycyclic aromatic hydrocarbons (PAHs) on dust collected in Shanghai, 18 29 2.7 People's Republic of China. Bulletin of Environmental Contamination and Toxicology, 2006, 76, 442-9 Synthesis and crystal structure of 2-debenzoyl and 4-deacetyl 1-deoxybaccatin VI derivatives. 28 8 3.4 Journal of Molecular Structure, 2005, 738, 59-65 A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during 27 5.3 219 the period of phasing out of leaded gasoline. Atmospheric Environment, 2005, 39, 1245-1253 Crystallographic determination of stereochemistry of biologically active 26 2",3"-dibromo-7-epi-10-deacetylcephalomannine. Bioorganic and Medicinal Chemistry Letters, 2005, 2.9 7 15, 839-42 Photooxidation of carbonyl sulfide in the presence of the typical oxides in atmospheric aerosol. 25 7 Science in China Series B: Chemistry, 2005, 48, 31-37 Speciation of the elements and compositions on the surfaces of dust storm particles: The evidence for the coupling of iron with sulfur in aerosol during the long-range trans-port. Science Bulletin, 24 2005, 50, 738

23	Preparation and evaluation of new brominated paclitaxel analogues. <i>Journal of Asian Natural Products Research</i> , 2005 , 7, 231-6	1.5	
22	Mechanism of the heteroge-neous reaction of carbonyl sulfide with typical compo-nents of atmospheric aerosol. <i>Science Bulletin</i> , 2004 , 49, 1231		8
21	Catalytic oxidation of CS2 over atmospheric particles and oxide catalysts. <i>Science in China Series B: Chemistry</i> , 2001 , 44, 587-595		5
20	Carbonyl sulfide derived from catalytic oxidation of carbon disulfide over atmospheric particles. <i>Environmental Science & Environmental Science & Env</i>	10.3	22
19	LARGE-SCALE PROCESS FOR HIGH PURITY TAXOL FROM BARK EXTRACT OF TAXUS YUNNANESIS. Journal of Liquid Chromatography and Related Technologies, 2000 , 23, 2499-2512	1.3	4
18	Temperature-programmed desorption of pyridine on solid superacids. <i>Materials Chemistry and Physics</i> , 1996 , 45, 220-222	4.4	4
17	Studies on SO 2日 promoted mixed oxide superacids. <i>Catalysis Letters</i> , 1996 , 37, 187-191	2.8	44
16	Electroanalytical studies of chlorophylls and their determination. <i>Electroanalysis</i> , 1991 , 3, 827-831	3	
15	Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3. <i>Journal of Catalysis</i> , 1990 , 125, 411-420	7.3	198
14	Toxic potency-adjusted control of air pollution for solid fuel combustion. <i>Nature Energy</i> ,	62.3	9
14	Toxic potency-adjusted control of air pollution for solid fuel combustion. <i>Nature Energy</i> , Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai	62.3	2
, i		62.3	
13	Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai A case study of the highly time-resolved evolution of aerosol chemical and optical properties in	62.3	2
13	Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China Variations of Cloud Condensation Nuclei (CCN) and aerosol activity during fog-haze episode: a case	62.3	2
13 12 11	Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China Variations of Cloud Condensation Nuclei (CCN) and aerosol activity during fog-haze episode: a case study from Shanghai Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai:	62.3	1
13 12 11	Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China Variations of Cloud Condensation Nuclei (CCN) and aerosol activity during fog-haze episode: a case study from Shanghai Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study	62.3	2 1 1 2
13 12 11 10	Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China Variations of Cloud Condensation Nuclei (CCN) and aerosol activity during fog-haze episode: a case study from Shanghai Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study Strong atmospheric new particle formation in winter, urban Shanghai, China	62.3	2 1 1 2 2

5	Insights into a historic severe haze weather in Shanghai: synoptic situation, boundary layer and pollutants	5
4	Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai	2
3	Particle-size distribution of polybrominated diphenyl ethers (PBDEs) and its implications for health	2
2	An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality	3
1	More Than Concentration Reduction: Contributions of Oxidation Technologies to Alleviating Aerosol Toxicity from Diesel Engines. Environmental Science and Technology Letters,	1