Douglas G Widman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4112487/publications.pdf

Version: 2024-02-01

394421 526287 27 1,232 19 27 g-index citations h-index papers 29 29 29 2946 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Beyond Neutralizing Antibody Levels: The Epitope Specificity of Antibodies Induced by National Institutes of Health Monovalent Dengue Virus Vaccines. Journal of Infectious Diseases, 2019, 220, 219-227.	4.0	22
2	Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nature Medicine, 2018, 24, 368-374.	30.7	117
3	In vitro toxicity and efficacy of verdinexor, an exportin 1 inhibitor, on opportunistic viruses affecting immunocompromised individuals. PLoS ONE, 2018, 13, e0200043.	2.5	28
4	Genetic Variation between Dengue Virus Type 4 Strains Impacts Human Antibody Binding and Neutralization. Cell Reports, 2018, 25, 1214-1224.	6.4	50
5	Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate. Journal of Infectious Diseases, 2018, 217, 1932-1941.	4.0	23
6	Human dengue virus serotype 2 neutralizing antibodies target two distinct quaternary epitopes. PLoS Pathogens, 2018, 14, e1006934.	4.7	35
7	A Reverse Genetics Platform That Spans the Zika Virus Family Tree. MBio, 2017, 8, .	4.1	59
8	Epitope Addition and Ablation via Manipulation of a Dengue Virus Serotype 1 Infectious Clone. MSphere, 2017, 2, .	2.9	14
9	Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. Journal of Virology, 2017, 91, .	3.4	44
10	Transplantation of a quaternary structure neutralizing antibody epitope from dengue virus serotype 3 into serotype 4. Scientific Reports, 2017, 7, 17169.	3.3	23
11	Neutralization mechanism of a highly potent antibody against Zika virus. Nature Communications, 2016, 7, 13679.	12.8	91
12	Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1. Journal of Virology, 2016, 90, 5090-5097.	3.4	30
13	Source and Purity of Dengue-Viral Preparations Impact Requirement for Enhancing Antibody to Induce Elevated IL-1Î ² Secretion: A Primary Human Monocyte Model. PLoS ONE, 2015, 10, e0136708.	2.5	6
14	Dengue virus envelope protein domain I/II hinge: a key target for dengue virus vaccine design?. Expert Review of Vaccines, 2015, 14, 5-8.	4.4	9
15	Subcapsular sinus macrophages limit dissemination of West Nile virus particles after inoculation but are not essential for the development of West Nile virus-specific T cell responses. Virology, 2014, 450-451, 278-289.	2.4	21
16	Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation. Nature Medicine, 2014, 20, 927-935.	30.7	130
17	Bioassay for the Measurement of Type-I Interferon Activity. Methods in Molecular Biology, 2013, 1031, 91-96.	0.9	3
18	Intrinsic adjuvanting of a novel single-cycle flavivirus vaccine in the absence of type I interferon receptor signaling. Vaccine, 2012, 30, 1465-1475.	3.8	11

#	ARTICLE	IF	CITATION
19	The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy. Immunity, 2012, 36, 933-946.	14.3	241
20	Enhancing the utility of a prM/E-expressing chimeric vaccine for Japanese encephalitis by addition of the JEV NS1 gene. Vaccine, 2011 , 29 , 7444 - 7455 .	3.8	21
21	Analyses of mutations selected by passaging a chimeric flavivirus identify mutations that alter infectivity and reveal an interaction between the structural proteins and the nonstructural glycoprotein NS1. Virology, 2011, 421, 96-104.	2.4	16
22	Repeated In Vivo Stimulation of T and B Cell Responses in Old Mice Generates Protective Immunity against Lethal West Nile Virus Encephalitis. Journal of Immunology, 2011, 186, 3882-3891.	0.8	37
23	Evaluation of RepliVAX WN, a Single-Cycle Flavivirus Vaccine, in a Non-Human Primate Model of West Nile Virus Infection. American Journal of Tropical Medicine and Hygiene, 2010, 82, 1160-1167.	1.4	30
24	RepliVAX WN, a single-cycle flavivirus vaccine to prevent West Nile disease, elicits durable protective immunity in hamsters. Vaccine, 2009, 27, 5550-5553.	3.8	30
25	Construction and characterization of a second-generation pseudoinfectious West Nile virus vaccine propagated using a new cultivation system. Vaccine, 2008, 26, 2762-2771.	3.8	59
26	Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis. Vaccine, 2008, 26, 2772-2781.	3.8	40
27	Chapter 2 Thirdâ€Generation Flavivirus Vaccines Based on Singleâ€Cycle, Encapsidationâ€Defective Viruses. Advances in Virus Research, 2008, 72, 77-126.	2.1	38