
## Jiang-Shan Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4111848/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Metalâ^'Metal-Interaction-Facilitated Coordination Polymer as a Sensing Ensemble: A Case Study for<br>Cysteine Sensing. Langmuir, 2011, 27, 481-486.                                                               | 3.5 | 93        |
| 2  | Highly selective iodide-responsive gel–sol state transition in supramolecular hydrogels. Journal of<br>Materials Chemistry, 2009, 19, 6219.                                                                        | 6.7 | 73        |
| 3  | A ratiometric luminescent sensing of Ag+ ion via in situ formation of coordination polymers.<br>Chemical Communications, 2011, 47, 5900.                                                                           | 4.1 | 71        |
| 4  | Cu MOF-based catalytic sensing for formaldehyde. Journal of Materials Chemistry C, 2018, 6, 8105-8114.                                                                                                             | 5.5 | 55        |
| 5  | Peroxidase-like activity of ferric ions and their application to cysteine detection. RSC Advances, 2014, 4, 64438-64442.                                                                                           | 3.6 | 41        |
| 6  | Photoluminescence of CdTe nanocrystals modulated by methylene blue and DNA. A label-free<br>luminescent signaling nanohybrid platform. Physical Chemistry Chemical Physics, 2009, 11, 5062.                        | 2.8 | 40        |
| 7  | Carbon dots as fluorescent probes for detection of VB <sub>12</sub> based on the inner filter effect.<br>RSC Advances, 2018, 8, 19786-19790.                                                                       | 3.6 | 33        |
| 8  | A solvatochromic AIE tetrahydro[5]helicene derivative as fluorescent probes for water in organic solvents and highly sensitive sensors for glyceryl monostearate. Talanta, 2020, 206, 120214.                      | 5.5 | 29        |
| 9  | Multifunctional Carbon Dots with Solid–Liquid State Orange Light Emission for Vitamin B12 Sensing,<br>Cellular Imaging, and Red/White Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 7420-7427.       | 5.0 | 25        |
| 10 | Highly selective and sensitive recognition of histidine based on the oxidase-like activity of Cu <sup>2+</sup> ions. RSC Advances, 2015, 5, 92114-92120.                                                           | 3.6 | 24        |
| 11 | Highly selective and sensitive sensing for Al <sup>3+</sup> and F <sup>â^'</sup> based on green photoluminescent carbon dots. RSC Advances, 2016, 6, 97346-97351.                                                  | 3.6 | 24        |
| 12 | In situ encapsulating silver nanocrystals into hydrogels. A "green―signaling platform for<br>thiol-containing amino acids or small peptides. Chemical Communications, 2011, 47, 2577-2579.                         | 4.1 | 20        |
| 13 | Flexible electrospun MWCNTs/Ag3PO4/PAN ternary composite fiber membranes with enhanced photocatalytic activity and stability under visible-light irradiation. Journal of Materials Science, 2018, 53, 10147-10159. | 3.7 | 20        |
| 14 | Highly selective and sensitive turn-on fluorescent probes for sensing Hg2+ ions in mixed aqueous solution. Sensors and Actuators B: Chemical, 2019, 281, 311-319.                                                  | 7.8 | 18        |
| 15 | Facile and green synthesis of N, Cl-dual-doped carbon dots as a label-free fluorescent probe for hematin and temperature sensing. Microchemical Journal, 2020, 153, 104528.                                        | 4.5 | 18        |
| 16 | Facile access to versatile aza-macrolides through iridium-catalysed cascade<br>allyl-amination/macrolactonization. Chemical Communications, 2020, 56, 960-963.                                                     | 4.1 | 16        |
| 17 | A novel photoluminescence sensing system sensitive for and selective to bromate anions based on carbon dots. RSC Advances, 2016, 6, 61891-61896.                                                                   | 3.6 | 14        |
| 18 | Formaldehyde sensing based on the catalytic reaction of β-HgS nanocrystals. Journal of Materials<br>Chemistry C, 2017, 5, 3757-3764.                                                                               | 5.5 | 13        |

JIANG-SHAN SHEN

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Enhanced fluorescence based on graphene self-assembled films and highly sensitive sensing for VB <sub>12</sub> . Journal of Materials Chemistry C, 2018, 6, 4400-4408.                                                                       | 5.5 | 11        |
| 20 | Novel Plasmon-Enhanced Fluorescence Sensing Platform Based on rGO/MoS <sub>2</sub> Films for<br>Ultrasensitive Detection of Protamine and Heparin. ACS Sustainable Chemistry and Engineering, 2020,<br>8, 9988-9997.                         | 6.7 | 10        |
| 21 | Diverse applications of TMB-based sensing probes. Organic and Biomolecular Chemistry, 2018, 16, 5667-5676.                                                                                                                                   | 2.8 | 7         |
| 22 | A label-free "SEF-FRET―fluorescent sensing platform for ultrasensitive DNA detection based on AgNPs<br>SAMs. Talanta, 2019, 205, 120072.                                                                                                     | 5.5 | 6         |
| 23 | A Multi-Catalytic Sensing for Hydrogen Peroxide, Glucose, and Organophosphorus Pesticides Based on<br>Carbon Dots. Frontiers in Chemistry, 2021, 9, 713104.                                                                                  | 3.6 | 6         |
| 24 | Tandem Förster resonance energy transfer induced visual ratiometric fluorescence sensing of<br>tetracyclines based on zeolitic imidazolate framework-8 incorporated with carbon dots and safranine<br>T. Analyst, The, 2022, 147, 1152-1158. | 3.5 | 6         |
| 25 | A Cu( <scp>ii</scp> ) coordination polymer-based catalytic sensing system for detecting cysteine and sulfur anions. Analytical Methods, 2018, 10, 4387-4393.                                                                                 | 2.7 | 5         |
| 26 | Selfâ€Assembled Multivalent Agâ€SR Coordination Polymers with Phosphataseâ€Like Activity. Chemistry - A<br>European Journal, 2021, 27, 7646-7650.                                                                                            | 3.3 | 5         |
| 27 | Enantioselective Dynamic Exchange Reactions of Imines. Journal of Organic Chemistry, 2021, 86, 12932-12944.                                                                                                                                  | 3.2 | 4         |
| 28 | Reaction-based fluorescence probes for "turn on―sensing fluoride ions. Organic and Biomolecular<br>Chemistry, 2022, 20, 1191-1195.                                                                                                           | 2.8 | 4         |