Giovanni Pizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4111421/publications.pdf Version: 2024-02-01

CIOVANNI PIZZI

#	Article	IF	CITATIONS
1	An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Computer Physics Communications, 2014, 185, 2309-2310.	3.0	1,561
2	Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nature Nanotechnology, 2018, 13, 246-252.	15.6	1,317
3	Wannier90 as a community code: new features and applications. Journal of Physics Condensed Matter, 2020, 32, 165902.	0.7	807
4	Band structure diagram paths based on crystallography. Computational Materials Science, 2017, 128, 140-184.	1.4	457
5	AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 2016, 111, 218-230.	1.4	399
6	Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nature Communications, 2016, 7, 12585.	5.8	278
7	BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Computer Physics Communications, 2014, 185, 422-429.	3.0	219
8	Materials Cloud, a platform for open computational science. Scientific Data, 2020, 7, 299.	2.4	189
9	AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Scientific Data, 2020, 7, 300.	2.4	142
10	Radiative recombination and optical gain spectra in biaxially strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi>-type germanium. Physical Review B, 2013, 87, .</mml:math 	1.1	64
11	Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows. Computational Materials Science, 2021, 187, 110086.	1.4	63
12	OPTIMADE, an API for exchanging materials data. Scientific Data, 2021, 8, 217.	2.4	49
13	Engineering polar discontinuities in honeycomb lattices. Nature Communications, 2014, 5, 5157.	5.8	43
14	AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Computational Materials Science, 2021, 188, 110165.	1.4	40
15	Automated high-throughput Wannierisation. Npj Computational Materials, 2020, 6, .	3.5	39
16	Near- and far-infrared absorption and electronic structure of Ge-SiGe multiple quantum wells. Physical Review B, 2010, 82, .	1.1	37
17	Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells. Nanotechnology, 2010, 21, 055202.	1.3	36
18	Conduction band intersubband transitions in Ge/SiGe quantum wells. Applied Physics Letters, 2009, 95, 051918.	1.5	26

GIOVANNI PIZZI

#	Article	IF	CITATIONS
19	Long intersubband relaxation times in <i>n</i> -type germanium quantum wells. Applied Physics Letters, 2011, 99, .	1.5	26
20	Optical absorption spectra of ultrathin PTCDA films on gold single crystals: Charge transfer beyond the first monolayer. Organic Electronics, 2009, 10, 1448-1453.	1.4	24
21	A posteriori metadata from automated provenance tracking: integration of AiiDA and TCOD. Journal of Cheminformatics, 2017, 9, 56.	2.8	24
22	Valley-Engineering Mobilities in Two-Dimensional Materials. Nano Letters, 2019, 19, 3723-3729.	4.5	23
23	Shear and Breathing Modes of Layered Materials. ACS Nano, 2021, 15, 12509-12534.	7.3	22
24	Data Management Plans: the Importance of Data Management in the BIGâ€MAP Project**. Batteries and Supercaps, 2021, 4, 1803-1812.	2.4	19
25	Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells. Applied Physics Letters, 2011, 99, 031907.	1.5	18
26	Workflow Engineering in Materials Design within the BATTERY 2030 + Project. Advanced Energy Materials, 2022, 12, .	10.2	18
27	Virtual Computational Chemistry Teaching Laboratories—Hands-On at a Distance. Journal of Chemical Education, 2021, 98, 3163-3171.	1.1	15
28	Strain-induced polar discontinuities in two-dimensional materials from combined first-principles and SchrĶdinger-Poisson simulations. Physical Review B, 2017, 96, .	1.1	13
29	Microscopic picture of paraelectric perovskites from structural prototypes. Physical Review Research, 2022, 4, .	1.3	11
30	Modeling picosecond electron dynamics of pump-probe intersubband spectroscopy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-italic">n-type Ge/SiGe quantum wells. Physical Review B, 2012, 86, .</mml:mi </mml:math 	1.1	10
31	An updated version of BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Computer Physics Communications, 2014, 185, 2311-2312.	3.0	10
32	Common workflows for computing material properties using different quantum engines. Npj Computational Materials, 2021, 7, .	3.5	10
33	Optical gain in short period Si/Ge superlattices on [001]-SiGe substrates. Journal of Applied Physics, 2011, 110, .	1.1	7
34	Effect of C-face 4H-SiC(0001) deposition on thermopower of single and multilayer graphene in AA, AB and ABC stacking. 2D Materials, 2014, 1, 035002.	2.0	6
35	Provenance, workflows, and crystallographic tools in materials science: AiiDA, spglib, and seekpath. MRS Bulletin, 2018, 43, 696-702.	1.7	6
36	Curvature effects on valley splitting and degeneracy lifting: Case of Si/Ge rolled-up nanotubes. Physical Review B, 2012, 85, .	1.1	2

GIOVANNI PIZZI

#	Article	IF	CITATIONS
37	Origins of visible-light emissions in porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1458-1461.	0.8	2
38	Comparison of confinement characters between porous silicon and silicon nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2422-2429.	0.9	1
39	Open-Science Platform for Computational Materials Science: AiiDA and the Materials Cloud. , 2018, , 1-24.		1
40	Open-Science Platform for Computational Materials Science: AiiDA and the Materials Cloud. , 2020, , 1813-1835.		1
41	Terahertz intersubband transitions in the conduction band of Ge/SiGe multi quantum wells. , 2010, , .		0
42	Magnetic field control of intersubband polaritons in narrow-gap semiconductors. Physical Review B, 2011, 83, .	1.1	0
43	Terahertz spectroscopy of germanium quantum wells on silicon substrate for terahertz photonics. , 2012, , .		0
44	Integration of Theoretical Crystallography Open Database and AiiDA. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s494-s494.	0.0	0