M J Tan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4111297/m-j-tan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

256 8,059 50 82 g-index

267 9,754 4.4 6.86 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
256	Extrudable region parametrical study of 3D printable concrete using recycled glass concrete. Journal of Building Engineering, 2022, 50, 104091	5.2	4
255	A comparative study on environmental performance of 3D printing and conventional casting of concrete products with industrial wastes <i>Chemosphere</i> , 2022 , 134310	8.4	О
254	Comprehensive investigations on printability and thermal performance of cementitious material incorporated with PCM under various conditions. <i>Energy Conversion and Management</i> , 2022 , 261, 11566	7 ^{0.6}	O
253	Thermal Comfort and Energy Analysis of a Hybrid Cooling System by Coupling Natural Ventilation with Radiant and Indirect Evaporative Cooling. <i>Energies</i> , 2021 , 14, 7825	3.1	2
252	Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. <i>Automation in Construction</i> , 2021 , 123, 103546	9.6	13
251	Use of magnesium-silicate-hydrate (M-S-H) cement mixes in 3D printing applications. <i>Cement and Concrete Composites</i> , 2021 , 117, 103901	8.6	9
250	Effect of printing parameters on material distribution in spray-based 3D concrete printing (S-3DCP). <i>Automation in Construction</i> , 2021 , 124, 103570	9.6	5
249	Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. <i>Cement and Concrete Research</i> , 2021 , 143, 106386	10.3	22
248	Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing. <i>Journal of Cleaner Production</i> , 2021 , 300, 126919	10.3	9
247	Effect of Fe doping on structural, elastic and electronic properties of B2½rCu phase under hydrostatic pressure: A first-principles study. <i>Materials Chemistry and Physics</i> , 2021 , 272, 124978	4.4	
246	Study of MgO-activated slag as a cementless material for sustainable spray-based 3D printing. Journal of Cleaner Production, 2020 , 258, 120671	10.3	17
245	Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. <i>Virtual and Physical Prototyping</i> , 2020 , 15, 178-193	10.1	23
244	Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. <i>Composites Part B: Engineering</i> , 2020 , 186, 107826	10	64
243	Rotation nozzle and numerical simulation of mass distribution at corners in 3D cementitious material printing. <i>Additive Manufacturing</i> , 2020 , 34, 101190	6.1	8
242	Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine. <i>Composites Part B: Engineering</i> , 2020 , 193, 108018	10	17
241	Rheology and Structural Rebuilding of One-Part Geopolymer Mortar in the Context of 3D Concrete Printing. <i>RILEM Bookseries</i> , 2020 , 426-431	0.5	1
240	Effect of nAl2O3 on the part density and microstructure during the laser-based powder bed fusion of AlSi10Mg composite. <i>Rapid Prototyping Journal</i> , 2020 , 26, 727-735	3.8	4

239	The global rise of 3D printing during the COVID-19 pandemic <i>Nature Reviews Materials</i> , 2020 , 5, 637-63	3 9 3.3	100
238	Fractography study of Co-Cr-Ni-Mo alloy fatigue wires drawn with different drawing practices. <i>International Journal of Fatigue</i> , 2020 , 130, 105277	5	4
237	Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. <i>Journal of Cleaner Production</i> , 2020 , 261, 12124	.5 ^{10.3}	52
236	Analysis of Strain Rate Sensitivity and Strain Rate Hardening in Collr Millo Wires Drawn with Different Drawing Practices. <i>Metals and Materials International</i> , 2019 , 25, 1047-1062	2.4	4
235	Study on the Deformation Homogeneity and Electrical Conductivity in Co-Cr-Ni-Mo Wires Drawn with Different Drawing Practices. <i>Journal of Materials Engineering and Performance</i> , 2019 , 28, 330-342	1.6	5
234	Plastic Instability in Co-Cr-Ni-Mo alloy wires drawn with different drawing practices. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 747, 80-97	5.3	2
233	Printability region for 3D concrete printing using slump and slump flow test. <i>Composites Part B: Engineering</i> , 2019 , 174, 106968	10	105
232	Towards sustainability-oriented decision making: Model development and its validation via a comparative case study on building construction methods. <i>Sustainable Development</i> , 2019 , 27, 860-872	6.7	19
231	Bonding temperature effects on the wide gap transient liquid phase bonding of Inconel 718 using BNi-2 paste filler metal. <i>Applied Surface Science</i> , 2019 , 484, 1223-1233	6.7	11
230	Valproic acid exhibits anti-tumor activity selectively against EGFR/ErbB2/ErbB3-coexpressing pancreatic cancer via induction of ErbB family members-targeting microRNAs. <i>Journal of Experimental and Clinical Cancer Research</i> , 2019 , 38, 150	12.8	17
229	Utilization of recycled glass for 3D concrete printing: rheological and mechanical properties. Journal of Material Cycles and Waste Management, 2019 , 21, 994-1003	3.4	37
228	Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent. <i>Construction and Building Materials</i> , 2019 , 211, 1073-1084	6.7	34
227	Effect of printing parameters in 3D concrete printing: Printing region and support structures. Journal of Materials Processing Technology, 2019 , 271, 261-270	5.3	69
226	Fenofibrate Rescues Diabetes-Related Impairment of Ischemia-Mediated Angiogenesis by PPAR&ndependent Modulation of Thioredoxin-Interacting Protein. <i>Diabetes</i> , 2019 , 68, 1040-1053	0.9	11
225	Time gap effect on bond strength of 3D-printed concrete. <i>Virtual and Physical Prototyping</i> , 2019 , 14, 104-113	10.1	87
224	Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. <i>Composites Part B: Engineering</i> , 2019 , 176, 107290	10	80
223	Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. <i>Construction and Building Materials</i> , 2019 , 221, 595-603	6.7	50
222	The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete. <i>Materials</i> , 2019 , 12,	3.5	83

221	The bonding time effects on the transient liquid phase bonding of Inconel 718 using nickel-based sintered brazing preform. <i>Applied Surface Science</i> , 2019 , 495, 143465	6.7	3
220	Fatigue behavior in Co-Cr-Ni-Mo medical wires drawn with different drawing practices. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019 , 99, 134-152	4.1	3
219	Post-bond heat treatment effects on the wide gap transient liquid phase bonding of Inconel 718 with BNi-2 paste filler metal. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 766, 138267	5.3	8
218	A systematical review of 3D printable cementitious materials. <i>Construction and Building Materials</i> , 2019 , 207, 477-490	6.7	83
217	Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. <i>Composites Part B: Engineering</i> , 2019 , 165, 563-571	10	120
216	Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. <i>Journal of Cleaner Production</i> , 2019 , 220, 610-619	10.3	81
215	Use of Genetically Modified Bacteria to Repair Cracks in Concrete. <i>Materials</i> , 2019 , 12,	3.5	6
214	High-Energy Diet and Shorter Light Exposure Drives Markers of Adipocyte Dysfunction in Visceral and Subcutaneous Adipose Depots of. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	5
213	Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. <i>Virtual and Physical Prototyping</i> , 2019 , 14, 284-292	10.1	45
212	Induction transient liquid phase bonding of Inconel 718 with the nickel-based sintered brazing preform. <i>Applied Surface Science</i> , 2019 , 473, 1024-1037	6.7	6
211	Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. <i>Composites Part B: Engineering</i> , 2019 , 165, 75-83	10	145
210	Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. <i>Materials Letters</i> , 2019 , 237, 348-351	3.3	66
209	Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing. <i>Construction and Building Materials</i> , 2019 , 198, 245-255	6.7	61
208	Bond Strength in 3D Printed Geopolymer Mortar. <i>RILEM Bookseries</i> , 2019 , 200-206	0.5	7
207	A review of 3D concrete printing systems and materials properties: current status and future research prospects. <i>Rapid Prototyping Journal</i> , 2018 , 24, 784-798	3.8	132
206	An Arrhenius equation-based model to predict the residual stress relief of post weld heat treatment of Ti-6Al-4V plate. <i>Journal of Manufacturing Processes</i> , 2018 , 32, 763-772	5	26
205	Effect of 3D Printing on Mechanical Properties of Fly Ash-Based Inorganic Geopolymer 2018 , 509-515		1
204	Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. <i>Construction and Building Materials</i> , 2018 , 163, 600-610	6.7	112

203	Joining of 3D-printed AlSi10Mg by friction stir welding. <i>Welding in the World, Le Soudage Dans Le Monde</i> , 2018 , 62, 675-682	1.9	11
202	Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. <i>Ceramics International</i> , 2018 , 44, 10258-10265	5.1	197
201	Measurement of tensile bond strength of 3D printed geopolymer mortar. <i>Measurement: Journal of the International Measurement Confederation</i> , 2018 , 113, 108-116	4.6	203
200	Fresh and hardened properties of 3D printable cementitious materials for building and construction. <i>Archives of Civil and Mechanical Engineering</i> , 2018 , 18, 311-319	3.4	239
199	Numerical and Experimental Investigation on the Hybrid Superplastic Forming of the Conical Mg Alloy Component. <i>Defect and Diffusion Forum</i> , 2018 , 385, 391-396	0.7	
198	Surface roughness evaluation of additive manufactured metallic components from white light images captured using a flexible fiberscope. <i>Optics and Lasers in Engineering</i> , 2018 , 110, 262-271	4.6	5
197	Current challenges and future potential of 3D concrete printing. <i>Materialwissenschaft Und Werkstofftechnik</i> , 2018 , 49, 666-673	0.9	37
196	Influence of drawing practices on the mechanical, texture and work hardening characteristics of Co-Cr-Ni-Mo wires. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 713, 94-104	5.3	6
195	Towards Additive Manufacturing: Pumping Flow Rate with Time-Dependent Material Rheology in 3D Cementitious Material Printing. <i>Materials Science Forum</i> , 2018 , 941, 2131-2136	0.4	1
194	Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. <i>Cement and Concrete Composites</i> , 2018 , 94, 307-314	8.6	153
193	Investigation of porosity reduction, microstructure and mechanical properties for joining of selective laser melting fabricated aluminium composite via friction stir welding. <i>Journal of Manufacturing Processes</i> , 2018 , 36, 33-43	5	11
192	Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. <i>Construction and Building Materials</i> , 2018 , 189, 676-685	6.7	45
191	3D printing trends in building and construction industry: a review. <i>Virtual and Physical Prototyping</i> , 2017 , 12, 261-276	10.1	318
190	Microstructure Stability of a Fine-Grained AZ31 Magnesium Alloy Processed by Constrained Groove Pressing During Isothermal Annealing. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2017 , 139,	3.3	11
189	Tensile flow behavior of AZ31 magnesium alloy processed by severe plastic deformation and post-annealing at moderately high temperatures. <i>Journal of Materials Processing Technology</i> , 2017 , 246, 235-244	5.3	27
188	Additive manufacturing of geopolymer for sustainable built environment. <i>Journal of Cleaner Production</i> , 2017 , 167, 281-288	10.3	205
187	Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. <i>Materials Letters</i> , 2017 , 209, 146-149	3.3	266
186	Improving the mechanical properties of TIG welding Ti-6Al-4V by post weld heat treatment. <i>Procedia Engineering</i> , 2017 , 207, 633-638		11

185	Effect of severe plastic deformation and post-annealing on the mechanical properties and bio-corrosion rate of AZ31 magnesium alloy. <i>Procedia Engineering</i> , 2017 , 207, 1475-1480		12
184	Automation of Robotic Concrete Printing Using Feedback Control System 2017,		6
183	Approaching Rectangular Extrudate in 3D Printing for Building and Construction by Experimental Iteration of Nozzle Design 2017 ,		4
182	Processing and Properties of Construction Materials for 3D Printing. <i>Materials Science Forum</i> , 2016 , 861, 177-181	0.4	52
181	Effect of Nano-Particle Addition on Grain Structure Evolution of Friction Stir-Processed Al 6061 During Postweld Annealing. <i>Jom</i> , 2016 , 68, 2268-2273	2.1	8
180	Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells. <i>Experimental and Therapeutic Medicine</i> , 2016 , 11, 2425-2431	2.1	8
179	Hybrid Superplastic Forming of Non-Superplastic AZ31 Mg Alloy. <i>Materials Science Forum</i> , 2016 , 838-839, 534-539	0.4	
178	Development of non-flammable high strength AZ91 + Ca alloys via liquid forging and extrusion. <i>Materials and Design</i> , 2016 , 99, 37-43	8.1	26
177	Friction stir processing of aluminium alloy AA7075: Microstructure, surface chemistry and corrosion resistance. <i>Corrosion Science</i> , 2016 , 106, 217-228	6.8	60
176	Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 1643-1657	3.5	14
175	Aluminium-carbon nanotubes composites produced from friction stir processing and selective laser melting. <i>Materialwissenschaft Und Werkstofftechnik</i> , 2016 , 47, 539-548	0.9	9
174	Dispersion of CNTs in Selective Laser Melting Printed AlSi10Mg Composites via Friction Stir Processing. <i>Materials Science Forum</i> , 2016 , 879, 1915-1920	0.4	7
173	Microstructure evolution in hot rolled 7075 Al via friction stir processing 2016 ,		1
172	Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure. <i>Construction and Building Materials</i> , 2016 , 114, 232-240	6.7	29
171	Friction stir processing of AllINT composites. <i>Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications</i> , 2016 , 230, 825-833	1.3	10
170	Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP). <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 667, 125-131	5.3	68
169	Dispersion of Al2O3 Reinforcements in Al Composites via Friction Stir Processing. <i>Materials Science Forum</i> , 2016 , 861, 236-240	0.4	1
168	Bulk Metal Forming Processes in Manufacturing 2015 , 171-230		

167	Enabling Wider Use of Magnesium Alloys for Lightweight Applications by Improving the Formability by Groove Pressing. <i>Procedia CIRP</i> , 2015 , 26, 449-454	1.8	16
166	Strength of donor-specific antibodies with the use of Luminex single-antigen beads is a reliable predictor of acute rejection in living-relative kidney recipients. <i>Transplantation Proceedings</i> , 2015 , 47, 309-12	1.1	6
165	Preoperative exercise facilitates abundant bone marrow collection in patients with type 2 diabetes for mononuclear cell therapy. <i>Cytotherapy</i> , 2015 , 17, 454-7	4.8	1
164	Mechanism of calcium phosphate deposition in a hydrothermal coating process. <i>Surface and Coatings Technology</i> , 2015 , 270, 197-205	4.4	20
163	Osmotic membrane bioreactor for municipal wastewater treatment and the effects of silver nanoparticles on system performance. <i>Journal of Cleaner Production</i> , 2015 , 88, 146-151	10.3	56
162	Identification of disease-related miRNAs based on co-expression network in spinal cord injury. <i>International Journal of Neuroscience</i> , 2015 , 125, 270-6	2	7
161	High temperature deformation behavior of Mg67Zn28Ca5 metallic glass and its composites. <i>Materials Science & Materials: Properties, Microstructure and Processing</i> , 2015 , 621, 1-7	5.3	7
160	Effect of cold-work on the Hall P etch breakdown in copper based micro-components. <i>Mechanics of Materials</i> , 2015 , 80, 124-135	3.3	20
159	Investigation on Properties of ECC Incorporating Crumb Rubber of Different Sizes. <i>Journal of Advanced Concrete Technology</i> , 2015 , 13, 241-251	2.3	56
158	Improved corrosion protection of magnesium by hydrothermally deposited biodegradable calcium phosphate coating. <i>Materials Chemistry and Physics</i> , 2015 , 161, 185-193	4.4	19
157	Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2015 , 137,	3.3	26
156	Potential Cell Source for Cell-Based Therapy and Tissue Engineering Applications: Urine-Derived Stem Cells. <i>Journal of Biomaterials and Tissue Engineering</i> , 2015 , 5, 150-156	0.3	2
155	Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2014 , 45, 352-362	2.5	29
154	Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 602, 143-149	5.3	66
153	A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26983-90	3.6	37
152	Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application. <i>Surface and Coatings Technology</i> , 2014 , 258, 931-937	4.4	25
151	Experimental and Simulation of Friction Effects in an Open-Die Microforging/Extrusion Process. <i>Journal of Micro and Nano-Manufacturing</i> , 2014 , 2,	1.3	9
150	FEM Study of Superplastic-Like Forming of Ti-6Al-4V Alloy. <i>Materials Science Forum</i> , 2014 , 783-786, 607-	61.2	

149	Microstructure Evolution of Ti-6Al-4V during Superplastic-like Forming. <i>Procedia Engineering</i> , 2014 , 81, 1090-1095		7
148	Processing of Epoxy-Nickel Matrix Composites Reinforced with Aluminum and Waste Elastomers. <i>Advanced Materials Research</i> , 2014 , 939, 98-105	0.5	4
147	Friction Effects During Open-die Micro-forging/Extrusion Processes: An Upper Bound Approach. <i>Procedia Engineering</i> , 2014 , 81, 1915-1920		9
146	Electrophoretic deposition of hydroxyapatite coatings on AZ31 magnesium substrate for biodegradable implant applications. <i>Progress in Crystal Growth and Characterization of Materials</i> , 2014 , 60, 74-79	3.5	13
145	YSZ-Reinforced Mg-Based Amorphous Composites: Processing, Characterisation & Corrosion. <i>Advanced Materials Research</i> , 2014 , 939, 122-129	0.5	2
144	Thermal properties of metallic glasses: Heating rate dependence and their correlation. <i>Materials Letters</i> , 2014 , 126, 81-84	3.3	4
143	Design of Multifunctional Energetic Structural Composites: A Preliminary Study on an Epoxy-Rubber Matrix with Exothermic Mixture Reinforcements. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2014 , 47-56	0.3	1
142	Superplastic-like forming of Ti-6Al-4V alloy. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 69, 1097-1104	3.2	23
141	Progressive microforming process: towards the mass production of micro-parts using sheet metal. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 66, 611-621	3.2	49
140	On the microstructure of micro-pins manufactured by a novel progressive microforming process. <i>International Journal of Material Forming</i> , 2013 , 6, 65-74	2	31
139	Facilitating Basal Slip to Increase Deformation Ability in Mg-Mn-Ce Alloy by Textural Reconstruction Using Friction Stir Processing. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2013 , 44, 3947-3960	2.3	9
138	In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating. <i>Materials Science and Engineering C</i> , 2013 , 33, 5019-27	8.3	15
137	Comparative study on WHO Western Pacific Region and World Federation of Chinese Medicine Societies international standard terminologies on traditional medicine: diseases in external medicine (part 1). <i>Journal of Integrative Medicine</i> , 2013 , 11, 67-71	4	3
136	Grain size and workpiece dimension effects on material flow in an open-die micro-forging/extrusion process. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 582, 379-388	5.3	23
135	Finite element modelling of superplastic-like forming using a dislocation density-based model for AA5083. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2013 , 21, 025006	2	12
134	Process optimization and microstructural development during superplastic-like forming of AA5083. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 69, 2415-2422	3.2	15
133	Bulk Metal Forming Processes in Manufacturing 2013 , 1-50		О
132	Deformation behavior of Mg67Zn28Ca5 metallic glass at near supercooled liquid region. <i>Journal of Alloys and Compounds</i> , 2013 , 549, 100-104	5.7	7

(2012-2013)

131	On valence electron density, energy dissipation and plasticity of bulk metallic glasses. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S56-S65	5.7	9	
130	Optimization of axisymmetric open-die micro-forging/extrusion processes: An upper bound approach. <i>International Journal of Mechanical Sciences</i> , 2013 , 71, 58-67	5.5	26	
129	Microstructural evolution and superplastic behavior in friction stir processed MgIiAlIn alloy. <i>Journal of Materials Science</i> , 2013 , 48, 8539-8546	4.3	18	
128	CHOP deficiency results in elevated lipopolysaccharide-induced inflammation and kidney injury. <i>American Journal of Physiology - Renal Physiology</i> , 2013 , 304, F440-50	4.3	45	
127	Humoral theory of transplantation: some hot topics. British Medical Bulletin, 2013, 105, 139-55	5.4	9	
126	Tension-Tension Fatigue Behaviour of Carbon Nanotube Reinforced Aluminium Composites. <i>Materials Science Forum</i> , 2013 , 765, 563-567	0.4	6	
125	In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: From amorphous to crystalline. <i>Materials Chemistry and Physics</i> , 2012 , 134, 1079-1087	4.4	34	
124	Effect of annealing on microstructure evolution and mechanical property of cold forged magnesium pipes. <i>Materials & Design</i> , 2012 , 39, 131-139		11	
123	Strain hardening at elevated temperatures induced by dynamic crystallization of an Al88Ni4Y8 amorphous alloy. <i>Scripta Materialia</i> , 2012 , 66, 382-385	5.6	6	
122	Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7. <i>Physica B: Condensed Matter</i> , 2012 , 407, 340-346	2.8	29	
121	Structural evolution of Ti50Cu50 on rapid cooling by molecular dynamics simulation. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 597-605	2.6	5	
120	Corrosion performance of melt-spun Mg67Zn28Ca5 metallic glass in artificial sweat. <i>Journal of Materials Science</i> , 2012 , 47, 6586-6592	4.3	6	
119	Microstructural study of forged magnesium pipes at room temperature. <i>Materials Science and Technology</i> , 2012 , 28, 1269-1275	1.5	3	
118	Evaluation of roughness, hardness, and strength of AA 6061 molds for manufacturing polymeric microdevices. <i>International Journal of Advanced Manufacturing Technology</i> , 2012 , 60, 1215-1221	3.2	1	
117	An Optimized Sheet Metal Forming Process Using Non-Isothermal Heating System. <i>Advanced Materials Research</i> , 2012 , 500, 385-390	0.5		
116	EBSD Study of Microstructural Development during Superplastic-Like Forming. <i>Materials Science Forum</i> , 2012 , 735, 37-42	0.4	1	
115	Corrosion Behavior and Surface Analysis of Melt-Spun Mg-Based Metallic Glass in Physiological Saline Solution. <i>Materials Science Forum</i> , 2012 , 706-709, 606-611	0.4	2	
114	Improved Tensile Strength of Carbon Nanotube Reinforced Aluminum Composites Processed by Powder Metallurgy. <i>Advanced Materials Research</i> , 2012 , 500, 651-656	0.5	9	

113	Greener manufacturing: Superplastic-like forming. Journal of Physics: Conference Series, 2012, 379, 0120	3 43	4
112	A simple approach to prepare Al/CNT composite: SpreadDispersion (SD) method. <i>Materials Letters</i> , 2011 , 65, 2742-2744	3.3	26
111	Analysis of TiNiHf shape memory alloys by combinatorial nanocalorimetry. <i>Acta Materialia</i> , 2011 , 59, 7602-7614	8.4	31
110	Superplastic-like forming of non-superplastic AA5083 combined with mechanical pre-forming. <i>International Journal of Advanced Manufacturing Technology</i> , 2011 , 52, 123-129	3.2	31
109	Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites. <i>Materials Science & Discourse Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 6045-6050	5.3	19
108	Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. <i>Powder Technology</i> , 2011 , 208, 42-48	5.2	122
107	Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. <i>Bulletin of Materials Science</i> , 2011 , 34, 805-810	1.7	16
106	Three New Peroxy Triterpene Lactones from Pseudolarix kaempferi. <i>Helvetica Chimica Acta</i> , 2011 , 94, 1697-1702	2	11
105	Importance of chamber gas pressure on processing of Al-based metallic glasses during melt spinning. <i>Philosophical Magazine Letters</i> , 2011 , 91, 656-663	1	2
104	New deformation phenomenon for micro-formability of polycrystalline materials. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1906-190) 5 ·3	3
103	Rapid thermal annealing of Ti-rich TiNi thin films: A new approach to fabricate patterned shape memory thin films. <i>Materials & Design</i> , 2011 , 32, 688-695		9
102	Evolution of structural, surfacial and mechanical properties of titanium lickel lopper thin films during rapid thermal annealing. Surface and Coatings Technology, 2011, 205, 3147-3157	4.4	6
101	Finite Element Modeling of a Non-Isothermal Superplastic-Like Forming Process 2011,		1
100	High Strength Aluminum Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes. <i>Advanced Materials Research</i> , 2011 , 311-313, 80-83	0.5	3
99	Processing and Properties of Amorphous Magnesium-Based Eco-Materials. <i>Materials Science Forum</i> , 2011 , 695, 186-189	0.4	2
98	Carbon Nanotube Evolution in Aluminum Matrix during Composite Fabrication Process. <i>Materials Science Forum</i> , 2011 , 690, 294-297	0.4	30
97	Effect of exposure of human monocyte-derived macrophages to high, versus normal, glucose on subsequent lipid accumulation from glycated and acetylated low-density lipoproteins. <i>Experimental Diabetes Research</i> , 2011 , 2011, 851280		11
96	Chemical constituents of Equisetum debile. <i>Journal of Asian Natural Products Research</i> , 2011 , 13, 811-6	1.5	9

(2007-2010)

95	Investigation of Process Parameters in Superplastic Forming of Mechanical Pre-Formed Sheet by FEM. <i>Key Engineering Materials</i> , 2010 , 447-448, 437-441	0.4	6
94	Nanoindentation of Multi-Wall CNT Reinforced Al Composites. <i>Key Engineering Materials</i> , 2010 , 447-448, 549-553	0.4	6
93	Glass Formation and Structural Study of Ti50Cu50 Alloy by Molecular Dynamics. <i>Materials Science Forum</i> , 2010 , 638-642, 1665-1670	0.4	1
92	Investigation of Microstructure and Hardness in Microfoming of Pure Copper Pins. <i>Key Engineering Materials</i> , 2010 , 447-448, 381-385	0.4	
91	Formability of TiØ9NbØ3TaØ.6Zr Biomaterial at High Temperatures. <i>Key Engineering Materials</i> , 2010 , 443, 620-625	0.4	1
90	Isothermal Rolling of Mg-Based Laminated Composites Made by Explosion Cladding. <i>Key Engineering Materials</i> , 2010 , 443, 614-619	0.4	6
89	COMPUTATIONAL STUDY OF TENSILE DEFORMATION OF A CONSTRAINED NANOSCALE METALLIC GLASS. <i>International Journal of Modern Physics B</i> , 2010 , 24, 305-310	1.1	2
88	Magnesium and Aluminium Carbon Nanotube Composites. <i>Key Engineering Materials</i> , 2010 , 425, 245-26	510.4	7
87	Manufacturing of an aluminum alloy mold for micro-hot embossing of polymeric micro-devices. Journal of Micromechanics and Microengineering, 2010 , 20, 055020	2	8
86	Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. <i>Materials & Design</i> , 2010 , 31, S96-S100		135
86		6-S70	135 34
	Materials & Design, 2010 , 31, S96-S100	6- S70 5-3	
85	Materials & Design, 2010, 31, S96-S100 Formability in AA5083 and AA6061 alloys for light weight applications. Materials & Design, 2010, 31, S66 Creep behavior of spray-deposited AlLi/SiCp composite. Materials Science & Design, 2010, 31, S66		34
85 84	Materials & Design, 2010, 31, S96-S100 Formability in AA5083 and AA6061 alloys for light weight applications. Materials & Design, 2010, 31, S66 Creep behavior of spray-deposited AlLi/SiCp composite. Materials Science & Design, 2010, 31, S66 Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4906-4913 A theoretical model for the bending of a laminated beam with SMA fiber embedded layer.	5.3	34 5
85 84 83	Formability in AA5083 and AA6061 alloys for light weight applications. <i>Materials & Design</i> , 2010 , 31, S60. Creep behavior of spray-deposited AlLi/SiCp composite. <i>Materials Science & Design</i> , 2010 , 31, S60. Structural Materials: Properties, Microstructure and Processing, 2010 , 527, 4906-4913 A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. Composite Structures, 2009 , 90, 458-464 Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich	5·3 5·3	34527
85 84 83 82	Formability in AA5083 and AA6061 alloys for light weight applications. <i>Materials & Design</i> , 2010 , 31, S60. Creep behavior of spray-deposited AlLi/SiCp composite. <i>Materials Science & Design</i> , 2010 , 31, S60. Creep behavior of spray-deposited AlLi/SiCp composite. <i>Materials Science & Design</i> , 2010 , 527, 4906-4913 A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. <i>Composite Structures</i> , 2009 , 90, 458-464 Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. <i>Journal of Alloys and Compounds</i> , 2009 , 469, 164-168 High-temperature tensile properties of Mg/Al2O3 nanocomposite. <i>Materials Science & Design</i> , 2010 , 31, S60.	5·3 5·3 5·7	3452759
85 84 83 82 81	Formability in AA5083 and AA6061 alloys for light weight applications. <i>Materials & Design</i> , 2010 , 31, S60. Creep behavior of spray-deposited AlLi/SiCp composite. <i>Materials Science & Design</i> , 2010 , 31, S60. Structural Materials: Properties, Microstructure and Processing, 2010 , 527, 4906-4913 A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. Composite Structures, 2009 , 90, 458-464 Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. Journal of Alloys and Compounds, 2009 , 469, 164-168 High-temperature tensile properties of Mg/Al2O3 nanocomposite. <i>Materials Science & Designe & De</i>	5·3 5·3 5·7 5·3	345275961

77	Development of nano-ZrO2 reinforced magnesium nanocomposites with significantly improved ductility. <i>Materials Science and Technology</i> , 2007 , 23, 1309-1312	1.5	13
76	Analysis of Grain Growth during Superplastic Deformation. <i>Mechanics of Advanced Materials and Structures</i> , 2007 , 14, 541-547	1.8	4
75	Oxidation Effects during High Temperature Deformation of CP Ti Alloy. <i>Materials Science Forum</i> , 2007 , 539-543, 3678-3683	0.4	
74	Superplasticity in CP-Titanium Alloys. <i>Materials Science Forum</i> , 2007 , 551-552, 373-378	0.4	3
73	Non-Twisted and Twisted CNT Bundles under Axial Tensile and Compressive Loads. <i>Solid State Phenomena</i> , 2007 , 121-123, 1415-1418	0.4	1
72	Twisting effects of carbon nanotube bundles subjected to axial compression and tension. <i>Journal of Applied Physics</i> , 2006 , 99, 114312	2.5	26
71	Tensile and compressive properties of carbon nanotube bundles. <i>Acta Materialia</i> , 2006 , 54, 225-231	8.4	77
70	Postbuckling analysis of laminated composite plates using the mesh-free kp-Ritz method. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 551-570	5.7	39
69	A note on fluid-pressure-assisted deep drawing processes. <i>Journal of Materials Processing Technology</i> , 2006 , 172, 174-181	5.3	14
68	Thermal stability of single and multi-walled carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	105
67	EBSD characterization of cavitation during superplastic deformation of Alli alloy. <i>Journal of Materials Processing Technology</i> , 2005 , 162-163, 429-434	5.3	9
66	Recent developments in friction-assisted sheet metal forming processes. <i>Journal of Materials Processing Technology</i> , 2005 , 167, 161-166	5.3	10
65	Enhanced superplasticity in commercially pure titanium alloy. Scripta Materialia, 2005, 52, 651-655	5.6	33
64	Buckling properties of carbon nanotube bundles. <i>Applied Physics Letters</i> , 2005 , 87, 041901	3.4	70
63	Grain boundary characterisation in superplastic deformation of Al-Li alloy using electron backscatter diffraction. <i>Materials Science and Technology</i> , 2004 , 20, 173-180	1.5	9
62	EBSD characterization of 8090 Alli alloy during dynamic and static recrystallization. <i>Materials Characterization</i> , 2004 , 52, 187-193	3.9	16
61	Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method. <i>International Journal of Mechanical Sciences</i> , 2004 , 46, 411-431	5.5	37
60	Re-examination of thissing strainduring superplastic deformation of AA7475. <i>Materials Science</i> & Structural Materials: Properties, Microstructure and Processing, 2004 , 374, 369-373	5.3	

(2002-2004)

59	Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm. <i>Structural and Multidisciplinary Optimization</i> , 2004 , 26, 284-294	3.6	23
58	Collar drawing using a urethane pad. <i>Journal of Materials Processing Technology</i> , 2004 , 147, 139-144	5.3	5
57	Three-dimensional modeling and simulation of superplastic forming. <i>Journal of Materials Processing Technology</i> , 2004 , 150, 76-83	5.3	26
56	Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. Journal of Sound and Vibration, 2004 , 276, 997-1017	3.9	123
55	Nonlinear analysis of laminated composite plates using the mesh-free kp-Ritz method based on FSDT. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2004 , 193, 4763-4779	5.7	50
54	The drawing of conical cups using an annular urethane pad. <i>Journal of Materials Processing Technology</i> , 2004 , 147, 163-163	5.3	1
53	Microstructure Evolution During High-Temperature Deformation of 8090 Al-Li Alloy. <i>Materials and Manufacturing Processes</i> , 2004 , 19, 373-389	4.1	3
52	Nanomechanics of single and multiwalled carbon nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	276
51	Two Novel Techniques for Forming Regularly Spaced Deep Recesses on Aluminium Sheet Panels. <i>Materials Science Forum</i> , 2003 , 437-438, 253-256	0.4	
50	Finite Element Modeling of Superplastic Sheet Metal Forming for Cavity Sensitive Materials. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2003 , 125, 256-259	1.8	2
49	A study of the strength of P/M 6061Al and composites during high strain rate superplastic deformation. <i>Journal of Materials Science</i> , 2003 , 38, 2505-2510	4.3	5
48	Dynamic continuous recrystallization characteristics in two stage deformation of MgBAlIZn alloy sheet. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2003 , 339, 124-132	5.3	342
47	Superplasticity and grain boundary sliding characteristics in two stage deformation of MgBAlfIZn alloy sheet. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2003 , 339, 81-89	5.3	95
46	Electrical characterisation of RF capacitive microswitch. <i>Sensors and Actuators A: Physical</i> , 2003 , 102, 296-310	3.9	15
45	Processing Metal-Matrix Composites for Superplastic Properties. <i>Materials Science Forum</i> , 2003 , 437-438, 165-168	0.4	
44	Superplasticity in a rolled MgBAlIIZn alloy by two-stage deformation method. <i>Scripta Materialia</i> , 2002 , 47, 101-106	5.6	50
43	Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method. <i>Computational Mechanics</i> , 2002 , 29, 486-497	4	76
42	Effect of grain boundary character distribution (GBCD) on the cavitation behaviour during superplastic deformation of Al 7475. <i>Materials Science & Description of Al Processing</i> 2002, 338, 243-252	5.3	17

41	Analysis of rectangular laminated composite plates via FSDT meshless method. <i>International Journal of Mechanical Sciences</i> , 2002 , 44, 1275-1293	5.5	75
40	EXPLORING THE ANTISTICKING PROPERTIES OF SOLID LUBRICANT THIN FILMS IN TRANSFER MOLDING. <i>International Journal of Modern Physics B</i> , 2002 , 16, 1080-1085	1.1	25
39	Evolutionary Optimization and Use of Neural Network for Optimum Stamping Process Design for Minimum Springback. <i>Journal of Computing and Information Science in Engineering</i> , 2002 , 2, 38-44	2.4	5
38	Sigma phase precipitation during superplastic forming of duplex stainless steel. <i>Materials at High Temperatures</i> , 2002 , 19, 41-44	1.1	4
37	High strain rate superplasticity and deformation mechanisms of powder metallurgy 6061 Al/SiCp composites. <i>Materials Science and Technology</i> , 2002 , 18, 581-585	1.5	1
36	Sheet Forming Analysis Based on Improved Contact Searching Algorithm and Simple Approach for Contact Force Evaluation. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2001, 123, 119-124	1.8	1
35	Alpha casing and superplastic behavior of TiBAlBV. <i>Journal of Materials Processing Technology</i> , 2001 , 112, 24-28	5.3	24
34	Mechanical design and optimization of capacitive micromachined switch. <i>Sensors and Actuators A: Physical</i> , 2001 , 93, 273-285	3.9	172
33	Cavity growth and filament formation of superplastically deformed Al 7475 Alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 298, 235-244	5.3	50
32	Influence of Alpha Casing on Superplastic Deformation of Ti-6Al-4V. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2001 , 123, 144-147	1.8	10
31	Inhomogeneous Cavity Distribution of Superplastically Deformed AL 7475 Alloy. <i>Materials Science Forum</i> , 2001 , 357-359, 333-338	0.4	
30	Role of reinforcement in sintering of SiC/316L stainless steel composite. <i>Powder Metallurgy</i> , 2000 , 43, 350-352	1.9	35
29	A further investigation of Green's functions for a piezoelectric material with a cavity or a crack. <i>International Journal of Solids and Structures</i> , 2000 , 37, 1065-1078	3.1	17
28	Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2000 , 282, 232-239	5.3	63
27	Processing and interface stability of SiC fiber reinforced Till 5VBCr matrix composites. <i>Journal of Materials Processing Technology</i> , 2000 , 102, 215-220	5.3	27
26	Applications of superplastic forming and diffusion bonding to hollow engine blades. <i>Journal of Materials Processing Technology</i> , 2000 , 99, 80-85	5.3	69
25	Matrix reinforcement interaction in SiC/316L stainless steel composite. <i>Journal of Materials Science Letters</i> , 2000 , 19, 613-615		8
24	Superplastic forming of duplex stainless steel. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 2394-2396	2.3	3

23	RAMAN AND PEELS STUDIES ON MAGNETRON SPUTTERED a-C. <i>International Journal of Modern Physics B</i> , 2000 , 14, 268-273	1.1	4
22	A Method for Establishing Hybrid Piezoelectric Composite Plate Theories with Continuous Interlaminar Stresses. <i>Journal of Intelligent Material Systems and Structures</i> , 2000 , 11, 821-827	2.3	
21	Influence of cavity boundary conditions on the effective electroelastic moduli of piezoelectric ceramic with cavities. <i>Mechanics Research Communications</i> , 1999 , 26, 229-238	2.2	6
20	Springback analysis for sheet forming processes by explicit finite element method in conjunction with the orthogonal regression analysis. <i>International Journal of Solids and Structures</i> , 1999 , 36, 4653-4	6 <i>⋛</i> 8 [™]	22
19	Nucleation phenomenon in SiC particulate reinforced magnesium composite. <i>Scripta Materialia</i> , 1999 , 41, 967-971	5.6	44
18	Dislocation Model for Continuous Recrystallisation during Initial Stage of Superplastic Deformation. <i>Scripta Materialia</i> , 1998 , 38, 827-831	5.6	8
17	Strain Rate Insensitive Plasticity in Aluminum Alloy 5083. <i>Scripta Materialia</i> , 1998 , 38, 1255-1261	5.6	28
16	Piezothermoelastic analysis of a piezoelectric material with an elliptic cavity under uniform heat flow. <i>Archive of Applied Mechanics</i> , 1998 , 68, 719-733	2.2	27
15	Powder metal matrix composites: selection and processing. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 1998 , 244, 80-85	5.3	148
14	Buperplastic Forminglbf Commercial Purity Aluminum. <i>Scripta Materialia</i> , 1997 , 38, 145-148	5.6	5
13	Selection of particulate reinforcement in P/M metal matrix composites. <i>Journal of Materials Processing Technology</i> , 1997 , 63, 913-917	5.3	7
12	Rate of deformation on HIPped Al-composites. <i>Journal of Materials Processing Technology</i> , 1997 , 67, 2-	7 5.3	
11	Aluminium-lithium/SiCp composites produced by mechanically milled powders. <i>Journal of Materials Processing Technology</i> , 1997 , 67, 8-12	5.3	17
10	Thermal cycling processes in metal-matrix composites. <i>Journal of Materials Processing Technology</i> , 1997 , 67, 62-66	5.3	7
9	Powder Hot Pressing and Front Pad Extrusion Method for Aluminum-Lithium Based Metal Matrix Composites. <i>Materials and Manufacturing Processes</i> , 1996 , 11, 749-761	4.1	
8	Influence of HIP parameters on mechanical properties of AA8090. <i>Journal of Materials Processing Technology</i> , 1995 , 48, 399-405	5.3	3
7	Heat treatments in aluminium-lithium composites extrusion. <i>Journal of Materials Processing Technology</i> , 1995 , 48, 747-755	5.3	5
6	Processing and High Temperature Characteristics of AL-Li/SiCp Composites. <i>Materials Science Forum</i> , 1994 , 170-172, 519-524	0.4	1

5	Discontinuous reinforcements in extruded aluminium-lithium matrix composites. <i>Journal of Materials Processing Technology</i> , 1993 , 37, 391-403	5.3	18
4	Rapidly solidified Al-alloy powders produced by the plasma melt and rapid solidification (PMRS) method. <i>Journal of Materials Processing Technology</i> , 1993 , 37, 417-429	5.3	3
3	The production of aluminium alloy composites using a cold isostatic press and extrusion approach. <i>Journal of Materials Processing Technology</i> , 1992 , 29, 245-253	5.3	6
2	Microstructure Modification of 3D Printed Aluminium Alloys by Friction Stir Processing. <i>Materials Science Forum</i> ,1016, 1460-1465	0.4	
1	Creating functionally graded concrete materials with varying 3D printing parameters. <i>Virtual and Physical Prototyping</i> 1-20	10.1	0