
Shawn A Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4110405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNAi-induced knockdown of white gene in the southern green stink bug (Nezara viridula L.). Scientific Reports, 2022, 12, .	3.3	5
2	Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Metabolomics, 2021, 17, 6.	3.0	14
3	<i>Brachypodium</i> Phenylalanine Ammonia Lyase (PAL) Promotes Antiviral Defenses against <i>Panicum mosaic virus</i> and Its Satellites. MBio, 2021, 12, .	4.1	16
4	Analysis of the transcriptomic, metabolomic, and gene regulatory responses to <i>Puccinia sorghi</i> in maize. Molecular Plant Pathology, 2021, 22, 465-479.	4.2	18
5	<i>Fusarium verticillioides</i> Induces Maize-Derived Ethylene to Promote Virulence by Engaging Fungal G-Protein Signaling. Molecular Plant-Microbe Interactions, 2021, 34, 1157-1166.	2.6	3

 $_{6}$ Detecting the Conspecific: Herbivory-Induced Olfactory Cues in the Fall Armyworm (Lepidoptera:) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

7	Fighting on two fronts: Elevated insect resistance in flooded maize. Plant, Cell and Environment, 2020, 43, 223-234.	5.7	18
8	Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. Plant Science, 2020, 291, 110329.	3.6	7
9	Plant Defense Chemicals against Insect Pests. Agronomy, 2020, 10, 1156.	3.0	47
10	Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature Plants, 2020, 6, 1375-1388.	9.3	52
11	The 13-lipoxygenase MSD2 and the ï‰-3 fatty acid desaturase MSD3 impact Spodoptera frugiperda resistance in Sorghum. Planta, 2020, 252, 62.	3.2	2
12	Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by <i>Colletotrichum graminicola</i> in maize. Molecular Plant Pathology, 2020, 21, 702-715.	4.2	43
13	Fertility of Pedicellate Spikelets in Sorghum Is Controlled by a Jasmonic Acid Regulatory Module. International Journal of Molecular Sciences, 2019, 20, 4951.	4.1	31
14	Sorghum MSD3 Encodes an ω-3 Fatty Acid Desaturase that Increases Grain Number by Reducing Jasmonic Acid Levels. International Journal of Molecular Sciences, 2019, 20, 5359.	4.1	24
15	Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 2019, 5, 1043-1056.	9.3	60
16	Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta, 2019, 249, 21-30.	3.2	103
17	MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nature Communications, 2018, 9, 822.	12.8	56
18	Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta, 2018, 248, 105-116.	3.2	21

SHAWN A CHRISTENSEN

#	Article	IF	CITATIONS
19	Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses in maize. Journal of Experimental Botany, 2018, 69, 1693-1705.	4.8	42
20	Fungal and herbivore elicitation of the novel maize sesquiterpenoid, zealexin A4, is attenuated by elevated CO2. Planta, 2018, 247, 863-873.	3.2	24
21	MaizeÂ <i>w3</i> Âdisrupts <i>homogentisate solanesyl transferase</i> Â(<i>ZmHst</i>) and reveals a plastoquinoneâ€9 independent path for phytoene desaturation and tocopherol accumulation in kernels. Plant Journal, 2018, 93, 799-813.	5.7	24
22	Herbivore-derived fatty-acid amides elicit reactive oxygen species burst in plants. Journal of Experimental Botany, 2018, 69, 1235-1245.	4.8	27
23	The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews, 2018, 17, 37-49.	6.5	96
24	Interactions Among Plants, Insects, and Microbes: Elucidation of Inter-Organismal Chemical Communications in Agricultural Ecology. Journal of Agricultural and Food Chemistry, 2018, 66, 6663-6674.	5.2	37
25	Elevated carbon dioxide reduces emission of herbivoreâ€induced volatiles in <scp><i>Zea mays</i></scp> . Plant, Cell and Environment, 2017, 40, 1725-1734.	5.7	31
26	Systems genetics reveals a transcriptional network associated with susceptibility in the maize–grey leaf spot pathosystem. Plant Journal, 2017, 89, 746-763.	5.7	49
27	Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. Journal of Experimental Botany, 2017, 68, 4709-4723.	4.8	98
28	RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biology, 2017, 17, 197.	3.6	43
29	Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides. PLoS ONE, 2016, 11, e0159270.	2.5	39
30	A maize death acid, 10-oxo-11-phytoenoic acid, is the predominant cyclopentenone signal present during multiple stress and developmental conditions. Plant Signaling and Behavior, 2016, 11, e1120395.	2.4	16
31	Genetic mapping shows intraspecific variation and transgressive segregation for caterpillarâ€induced aphid resistance in maize. Molecular Ecology, 2015, 24, 5739-5750.	3.9	45
32	Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11407-11412.	7.1	128
33	Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant, Cell and Environment, 2015, 38, 2195-2207.	5.7	137
34	Two closely related members of <i><scp>A</scp>rabidopsis</i> 13â€lipoxygenases (13â€ <scp>LOXs</scp>), <scp>LOX3</scp> and <scp>LOX4</scp> , reveal distinct functions in response to plantâ€parasitic nematode infection. Molecular Plant Pathology, 2014, 15, 319-332.	4.2	64
35	Effects of elevated [<scp><scp>CO₂</scp></scp>] on maize defence against mycotoxigenic <i><scp>F</scp>usarium verticillioides</i> . Plant, Cell and Environment, 2014, 37, 2691-2706.	5.7	107
36	Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant Journal, 2014, 79, 659-678.	5.7	233

#	Article	IF	CITATIONS
37	Seed Treatment with Live or Dead <i><scp>F</scp>usarium verticillioides</i> Equivalently Reduces the Severity of Subsequent Stalk Rot. Journal of Phytopathology, 2014, 162, 201-204.	1.0	2
38	The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 Is Required to Mount an Effective Jasmonate-Mediated Defense Against <i>Fusarium verticillioides</i> in Maize. Molecular Plant-Microbe Interactions, 2014, 27, 1263-1276.	2.6	89
39	The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and herbivoreâ€induced plant volatile production for defense against insect attack. Plant Journal, 2013, 74, 59-73.	5.7	217
40	Disruption of <i>OPR7</i> and <i>OPR8</i> Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. Plant Cell, 2012, 24, 1420-1436.	6.6	222
41	Quantification of Fungal Colonization, Sporogenesis, and Production of Mycotoxins Using Kernel Bioassays. Journal of Visualized Experiments, 2012, , .	0.3	24
42	A novel, conditional, lesion mimic phenotype in cotton cotyledons due to the expression of an endochitinase gene from Trichoderma virens. Plant Science, 2012, 183, 86-95.	3.6	8
43	The lipid language of plant–fungal interactions. Fungal Genetics and Biology, 2011, 48, 4-14.	2.1	182
44	Wrap-and-plant technology to manage sustainably potato cyst nematodes in East Africa. Nature Sustainability, 0, , .	23.7	5