Shu Diao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4110368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allogeneic Periodontal Ligament Stem Cell Therapy for Periodontitis in Swine Â. Stem Cells, 2010, 28, 1829-1838.	3.2	321
2	Functional Tooth Restoration by Allogeneic Mesenchymal Stem Cell-Based Bio-Root Regeneration in Swine. Stem Cells and Development, 2013, 22, 1752-1762.	2.1	128
3	Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Research, 2012, 8, 346-356.	0.7	110
4	Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Research and Therapy, 2016, 7, 130.	5.5	92
5	Allogeneic Stem Cells From Deciduous Teeth in Treatment for Periodontitis in Miniature Swine. Journal of Periodontology, 2014, 85, 845-851.	3.4	62
6	Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine. Stem Cell Research and Therapy, 2015, 6, 249.	5.5	62
7	Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche. Stem Cell Research and Therapy, 2017, 8, 210.	5.5	59
8	Interactions between m6A modification and miRNAs in malignant tumors. Cell Death and Disease, 2021, 12, 598.	6.3	52
9	Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration. BioMed Research International, 2017, 2017, 1-9.	1.9	43
10	Demethylation of <scp>SFRP</scp> 2 by histone demethylase <scp>KDM</scp> 2A regulated osteoâ€∤dentinogenic differentiation of stem cells of the apical papilla. Cell Proliferation, 2016, 49, 330-340.	5.3	42
11	Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration. , 2019, 10, 793.		42
12	Effects of Canonical NF- <i>κ</i> B Signaling Pathway on the Proliferation and Odonto/Osteogenic Differentiation of Human Stem Cells from Apical Papilla. BioMed Research International, 2014, 2014, 1-12.	1.9	39
13	<scp>IGFBP</scp> 5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton's jelly umbilical cord stem cells, <i>via</i> the <scp>JNK</scp> and <scp>MEK</scp> /Erk signalling pathways. Cell Proliferation, 2016, 49, 618-627.	5.3	37
14	Regeneration characteristics of different dental derived stem cell sheets. Journal of Oral Rehabilitation, 2020, 47, 66-72.	3.0	37
15	SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway. Cellular and Molecular Biology Letters, 2017, 22, 14.	7.0	30
16	The cell reâ€associationâ€based wholeâ€tooth regeneration strategies in large animal, <i>Sus scrofa</i> . Cell Proliferation, 2018, 51, e12479.	5.3	27
17	Comparative Analysis of Proliferation and Differentiation Potentials of Stem Cells from Inflamed Pulp of Deciduous Teeth and Stem Cells from Exfoliated Deciduous Teeth. BioMed Research International, 2014, 2014, 1-12.	1.9	25
18	Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs. BMC Genomics, 2017, 18, 148.	2.8	24

Shu Diao

#	Article	IF	CITATIONS
19	Inorganic nitrate alleviates the senescence-related decline in liver function. Science China Life Sciences, 2018, 61, 24-34.	4.9	22
20	Local Injection of Allogeneic Stem Cells from Apical Papilla Enhanced Periodontal Tissue Regeneration in Minipig Model of Periodontitis. BioMed Research International, 2018, 2018, 1-8.	1.9	22
21	DLX5 and HOXC8 enhance the chondrogenic differentiation potential of stem cells from apical papilla via LINC01013. Stem Cell Research and Therapy, 2020, 11, 271.	5.5	22
22	SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla. Cell Biology International, 2017, 41, 534-543.	3.0	21
23	Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in <scp>MSC</scp> s niche. Cell Proliferation, 2017, 50, .	5.3	20
24	Dietary nitrate supplementation prevents radiotherapy-induced xerostomia. ELife, 2021, 10, .	6.0	20
25	Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Research and Therapy, 2019, 10, 89.	5.5	19
26	Whole-Tooth Regeneration by Allogeneic Cell Reassociation in Pig Jawbone. Tissue Engineering - Part A, 2019, 25, 1202-1212.	3.1	19
27	GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connective Tissue Research, 2021, 62, 325-336.	2.3	16
28	Mandible exosomal ssc-mir-133b regulates tooth development in miniature swine via endogenous apoptosis. Bone Research, 2018, 6, 28.	11.4	15
29	Homeobox C8 inhibited the osteoâ€∤dentinogenic differentiation and migration ability of stem cells of the apical papilla via activating KDM1A. Journal of Cellular Physiology, 2020, 235, 8432-8445.	4.1	15
30	SFRP2 promotes stem cells from apical papillaâ€mediated periodontal tissue regeneration in miniature pig. Journal of Oral Rehabilitation, 2020, 47, 12-18.	3.0	14
31	MiR-495/IGF-1/AKT Signaling as a Novel Axis Is Involved in the Epithelial-to-Mesenchymal Transition of Oral Squamous Cell Carcinoma. Journal of Oral and Maxillofacial Surgery, 2019, 77, 1009-1021.	1.2	12
32	The Histone Demethylase KDM3B Promotes Osteo-/Odontogenic Differentiation, Cell Proliferation, and Migration Potential of Stem Cells from the Apical Papilla. Stem Cells International, 2020, 2020, 1-14.	2.5	12
33	Identification of differential microRNA expression during tooth morphogenesis in the heterodont dentition of miniature pigs, SusScrofa. BMC Developmental Biology, 2015, 15, 51.	2.1	11
34	IGF2 enhanced the osteoâ€∤dentinogenic and neurogenic differentiation potentials of stem cells from apical papilla. Journal of Oral Rehabilitation, 2020, 47, 55-65.	3.0	11
35	Depletion of PRDM9 enhances proliferation, migration and chemotaxis potentials in human periodontal ligament stem cells. Connective Tissue Research, 2020, 61, 498-508.	2.3	9
36	Tracking diphyodont development in miniature pig in vitro and in vivo. Biology Open, 2019, 8, .	1.2	8

Shu Diao

#	Article	IF	CITATIONS
37	A Comprehensive Analysis of SE-IncRNA/mRNA Differential Expression Profiles During Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 721205.	3.7	8
38	The miRâ€3940â€5p inhibits cell proliferation of gingival mesenchymal stem cells. Oral Diseases, 2019, 25, 1363-1373.	3.0	7
39	IncRNA HHIP-AS1 Promotes the Osteogenic Differentiation Potential and Inhibits the Migration Ability of Periodontal Ligament Stem Cells. Stem Cells International, 2021, 2021, 1-12.	2.5	7
40	miR-4651 inhibits cell proliferation of gingival mesenchymal stem cells by inhibiting HMGA2 under nifedipine treatment. International Journal of Oral Science, 2020, 12, 10.	8.6	6
41	miRâ€196bâ€5p inhibits proliferation of Wharton's jelly umbilical cord stem cells. FEBS Open Bio, 2021, 11, 278-288.	2.3	6
42	SFRP2 enhances dental pulp stem cellâ€mediated dentin regeneration in rabbit jaw. Oral Diseases, 2021, 27, 1738-1746.	3.0	4