Yoshiaki Tanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/411010/publications.pdf

Version: 2024-02-01

49 papers

2,121 citations

257101 24 h-index 223531 46 g-index

58 all docs 58 docs citations

58 times ranked 2179 citing authors

#	Article	IF	CITATIONS
1	Developing more sustainable processes for ammonia synthesis. Coordination Chemistry Reviews, 2013, 257, 2551-2564.	9.5	343
2	Highly Phosphorescent Iridium Complexes Containing Both Tridentate Bis(benzimidazolyl)-benzene or -pyridine and Bidentate Phenylpyridine:Â Synthesis, Photophysical Properties, and Theoretical Study of Ir-Bis(benzimidazolyl)benzene Complex. Inorganic Chemistry, 2006, 45, 8907-8921.	1.9	203
3	Copper-Catalyzed Enantioselective Propargylic Amination of Propargylic Esters with Amines: Copperâr'Allenylidene Complexes as Key Intermediates. Journal of the American Chemical Society, 2010, 132, 10592-10608.	6.6	198
4	Syntheses and Phosphorescent Properties of Blue Emissive Iridium Complexes with Tridentate Pyrazolyl Ligands. Inorganic Chemistry, 2008, 47, 7154-7165.	1.9	143
5	Cleavage and Formation of Molecular Dinitrogen in a Single System Assisted by Molybdenum Complexes Bearing Ferrocenyldiphosphine. Angewandte Chemie - International Edition, 2014, 53, 11488-11492.	7.2	111
6	Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chemical Society Reviews, 2021, 50, 5201-5242.	18.7	87
7	Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes. Chemical Record, 2016, 16, 1549-1577.	2.9	82
8	Formation of Vinylidenes from Internal Alkynes at a Cyclotriphosphato Ruthenium Complex. Journal of the American Chemical Society, 2008, 130, 16856-16857.	6.6	72
9	Recent advances in catalytic silylation of dinitrogen using transition metal complexes. Coordination Chemistry Reviews, 2019, 389, 73-93.	9.5	70
10	Reaction Mechanism of the Câ $^{\circ}$ N Triple Bond Cleavage of \hat{l}^2 -Ketonitriles on a Molybdenum(0) Center1. Journal of the American Chemical Society, 2000, 122, 1690-1699.	6.6	54
11	Synthesis of Group IV (Zr, Hf)â°Group VIII (Fe, Ru) Heterobimetallic Complexes Bearing Metallocenyl Diphosphine Moieties and Their Application to Catalytic Dehydrogenation of Amineâ°Boranes. Organometallics, 2011, 30, 2394-2404.	1.1	48
12	Reactivities of the coordinated organonitriles in molybdenum(0) and tungsten(0) phosphine complexes: protonation of the nitrile carbon and cleavage of the \hat{C}_1^{-1} 4N triple bond. Inorganica Chimica Acta, 1998, 280, 163-171.	1.2	45
13	Intramolecular Edge-to-Face Aromatic Ï€â^'Ï€ Interaction in Optically Active Rutheniumâ^Allenylidene Complexes for Enantioselective Propargylic Substitution Reactions. Organometallics, 2010, 29, 2381-2384.	1.1	42
14	Preparation and reactivity of molybdenum–dinitrogen complexes bearing an arsenic-containing ANA-type pincer ligand. Chemical Communications, 2013, 49, 9290.	2.2	38
15	Design and Preparation of Molybdenum–Dinitrogen Complexes with Ferrocenyldiphosphine and Pentamethylcyclopentadienyl Moieties as Auxiliary Ligands. Chemistry - A European Journal, 2013, 19, 11874-11877.	1.7	37
16	Recent advances in nitrogen fixation upon vanadium complexes. Coordination Chemistry Reviews, 2019, 381, 135-150.	9.5	35
17	Rutheniumâ€Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angewandte Chemie - International Edition, 2021, 60, 11231-11236.	7.2	32
18	Syntheses and Skeletal Transformations of NCNH- and NCN-Bridged Tetrairidium(III) Cages. Journal of the American Chemical Society, 2002, 124, 6528-6529.	6.6	31

#	Article	IF	CITATIONS
19	Ruthenium-Catalyzed Vinylic Substitution Reactions with Nucleophiles via Butatrienylidene Intermediates. Journal of the American Chemical Society, 2008, 130, 2908-2909.	6.6	29
20	Synthesis and Reactivity of Hybrid Phosphido- and Thiolato-Bridged Diruthenium Complexes. Organometallics, 2008, 27, 6039-6042.	1.1	28
21	Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water. Chemistry - an Asian Journal, 2017, 12, 2544-2548.	1.7	26
22	A Cyanamido-Bridged Diiridium Complex:  A Reactive Building Block for Polynuclear Cyanamido Complexes. Organometallics, 2005, 24, 2251-2254.	1.1	24
23	Remarkable Effect of Halogens on Catalytic Activities of Thiolato-Bridged Diruthenium Complexes in Propargylic Substitution Reactions. Organometallics, 2009, 28, 1138-1142.	1.1	24
24	Synthesis and Reactivity of Ruthenium Complexes Bearing Arsenic-Containing Arsenic-Nitrogen-Arsenic-Type Pincer Ligand. Organometallics, 2014, 33, 5295-5300.	1.1	23
25	Electrophilic O-Methylation of a Terminal Nitrosyl Ligand Attained by an Earlyâ^'Late Heterobimetallic Effect. Organometallics, 2006, 25, 560-562.	1.1	22
26	Propargylic Substitution Reaction Catalyzed by Group IV (Ti, Zr, Hf)–Ru Heterobimetallic Complexes. Organometallics, 2011, 30, 3194-3199.	1.1	18
27	Preparation and reactivity of molybdenum complexes bearing pyrrole-based PNP-type pincer ligand. Chemical Communications, 2020, 56, 6933-6936.	2.2	17
28	Transformations of Alkynes at a Cyclotriphosphato Ruthenium Complex. Organometallics, 2013, 32, 527-537.	1.1	15
29	Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines. Journal of Organic Chemistry, 2021, 86, 12577-12590.	1.7	15
30	Synthesis, Structures, and Properties of Group 9â^ and Group 10â^ Group 6 Heterodinuclear Nitrosyl Complexes. Inorganic Chemistry, 2008, 47, 4264-4274.	1.9	13
31	Synthesis and reactivities of a bis(cyanamido)-capped triruthenium complex. Dalton Transactions, 2007, , 4701.	1.6	10
32	Core Expansion Reactions of Cyanamido/Carbodiimido-Bridged Polynuclear Iridium Complexes. Inorganic Chemistry, 2009, 48, 773-780.	1.9	8
33	Synthesis and Reactivity of Hybrid Phosphido- and Hydrosulfido-Bridged Diruthenium Complexes: Transformations into Diruthenium and Tetraruthenium Complexes Bridged by Phosphido and Sulfido Ligands. Organometallics, 2012, 31, 3292-3299.	1.1	8
34	Rh4S7and Ir3CuS6Clusters with Di- and Trisulfido Ligands Derived from Dinuclear Hydrogensulfido Complexes. Chemistry Letters, 1999, 28, 1279-1280.	0.7	7
35	Synthesis of Optically Active <i>N</i> , <i>N</i>	imine 1.1	7
36	Remarkable Effect of Valence Electrons in Thiolato-Bridged Diruthenium Complexes toward Catalytic Dimerization of \hat{l}_{\pm} -Methylstyrenes. Organometallics, 2011, 30, 5972-5977.	1.1	7

3

#	Article	IF	CITATIONS
37	Rutheniumâ€Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angewandte Chemie, 2021, 133, 11331-11336.	1.6	7
38	Photoredox―and Nickelâ€Catalyzed Hydroalkylation of Alkynes with 4â€Alkylâ€1,4â€dihydropyridines: Ligandâ€Controlled Regioselectivity. Chemistry - A European Journal, 2022, 28, .	1.7	7
39	Syntheses and properties of NCN-bridged tri- and tetranuclear complexes of cobalt and rhodium. Journal of Organometallic Chemistry, 2007, 692, 208-216.	0.8	6
40	Synthesis and diastereoselective ligand substitution reaction of a mono(sulfido)-bridged Ir–Mo heterodinuclear complex. Inorganic Chemistry Communication, 2008, 11, 587-590.	1.8	6
41	Phosphine Oxidation with Water and Ferrocenium(III) Cation Induced by Visible‣ight Irradiation. Chemistry - A European Journal, 2018, 24, 18618-18622.	1.7	6
42	Synthesis and Reactivities of Sulfido-bridged Ir–W and Ir–Re Heterodinuclear Complexes with Imido Ligands. Chemistry Letters, 2007, 36, 622-623.	0.7	4
43	Ruthenium―and Copperâ€Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. Chemistry - A European Journal, 2021, 27, 15650-15659.	1.7	4
44	Synthesis, Structure, and Reactivity of Group VI Metal Complexes Bearing Group IV Metallocenyldiphosphine Moieties and a Pentamethylcyclopentadienyl Ligand. Organometallics, 2013, 32, 2007-2013.	1.1	3
45	Synthesis and Skeletal Transformation of Cyanamido(2–)- and Cyanamido(1–)-Bridged Ruthenium Complexes with Hexamethylbenzene Ligands. Chemistry Letters, 2011, 40, 1167-1169.	0.7	2
46	Observation of the New κ2C,O:κ2C′,O′ Coordination Mode of 1,1,2,2-Tetraacetylethanato Ligand in a Dinuclear 1,1,1,5,5,5-Hexafluoroacetylacetonato Palladium(II) Complex. Chemistry Letters, 2006, 35, 936-937.	0.7	1
47	Phosphine Oxidation with Water and Ferrocenium(III) Cation induced by Visible‣ight Irradiation. Chemistry - A European Journal, 2018, 24, 18567-18567.	1.7	0
48	Ruthenium―and Copperâ€Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. Chemistry - A European Journal, 2021, 27, 15562.	1.7	0
49	Cover Feature: Photoredox†and Nickelâ€Catalyzed Hydroalkylation of Alkynes with 4â€Alkylâ€1,4â€dihydropyridines: Ligandâ€Controlled Regioselectivity (Chem. Eur. J. 36/2022). Chemistry - A European Journal, 2022, 28, .	1.7	0