Zongan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4110060/publications.pdf

Version: 2024-02-01

		430874	434195
35	985	18	31
papers	citations	h-index	g-index
35	35	35	1161
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Scientific Reports, 2018, 8, 7395.	3.3	104
2	Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Materials Science and Engineering C, 2018, 89, 213-222.	7. 3	96
3	A review of 3D printed porous ceramics. Journal of the European Ceramic Society, 2022, 42, 3351-3373.	5.7	81
4	Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. International Journal of Biological Macromolecules, 2020, 149, 148-157.	7. 5	69
5	The recent development of vat photopolymerization: A review. Additive Manufacturing, 2021, 48, 102423.	3.0	67
6	Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis, 2019, 40, 930-954.	2.4	56
7	Fabrication of PDMS microfluidic devices with 3D wax jetting. RSC Advances, 2017, 7, 3313-3320.	3.6	45
8	Design and fabrication of graduated porous Ti-based alloy implants for biomedical applications. Journal of Alloys and Compounds, 2017, 728, 1043-1048.	5.5	42
9	3D-printed "fistula stent―designed for management of enterocutaneous fistula: An advanced strategy. World Journal of Gastroenterology, 2017, 23, 7489-7494.	3.3	40
10	Bioinspired Anti-digestive Hydrogels Selected by a Simulated Gut Microfluidic Chip for Closing Gastrointestinal Fistula. IScience, 2018, 8, 40-48.	4.1	33
11	Marine-inspired molecular mimicry generates a drug-free, but immunogenic hydrogel adhesive protecting surgical anastomosis. Bioactive Materials, 2021, 6, 770-782.	15.6	33
12	Elasto-inertial particle focusing in 3D-printed microchannels with unconventional cross sections. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	30
13	Applications of four-dimensional printing in emerging directions: Review and prospects. Journal of Materials Science and Technology, 2021, 91, 105-120.	10.7	29
14	Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Optics and Laser Technology, 2015, 68, 23-27.	4.6	26
15	Preparation of paper micro-fluidic devices used in bio-assay based on drop-on-demand wax droplet generation. Analytical Methods, 2014, 6, 878-885.	2.7	22
16	A Porous Scaffold Design Method for Bone Tissue Engineering Using Triply Periodic Minimal Surfaces. IEEE Access, 2018, 6, 1015-1022.	4.2	22
17	Programming electronic skin with diverse skin-like properties. Journal of Materials Chemistry A, 2021, 9, 963-973.	10.3	20
18	Preparation of PDMS microfluidic devices based on drop-on-demand generation of wax molds. Analytical Methods, 2014, 6, 4716-4722.	2.7	19

#	Article	IF	Citations
19	Gut bioengineering promotes gut repair and pharmaceutical research: a review. Journal of Tissue Engineering, 2019, 10, 204173141983984.	5.5	17
20	Fabrication of Different Microchannels by Adjusting the Extrusion Parameters for Sacrificial Molds. Micromachines, 2019, 10, 544.	2.9	14
21	Fabrication of paper micro-devices with wax jetting. RSC Advances, 2016, 6, 17921-17928.	3.6	13
22	Fabrication of gelatin-based printable inks with improved stiffness as well as antibacterial and UV-shielding properties. International Journal of Biological Macromolecules, 2021, 186, 396-404.	7.5	13
23	A Lightweight One-Stage Defect Detection Network for Small Object Based on Dual Attention Mechanism and PAFPN. Frontiers in Physics, 2021, 9, .	2.1	13
24	Processing and 3D printing of Gradient Heterogeneous Bio-Model Based on Computer Tomography Images. IEEE Access, 2016, 4, 8814-8822.	4.2	11
25	Biomaterials and biosensors in intestinal organoid culture, a progress review. Journal of Biomedical Materials Research - Part A, 2020, 108, 1501-1508.	4.0	11
26	Application of a 3D-printed â€fistula stent―in plugging enteroatmospheric fistula with open abdomen: A case report. World Journal of Gastroenterology, 2019, 25, 1775-1782.	3.3	11
27	Fabrication of PDMS microfluidic chips used in rapid diagnosis by micro jetting. Multimedia Tools and Applications, 2018, 77, 3761-3774.	3.9	8
28	Fabrication of Microfluidic Chips Based on an EHD-Assisted Direct Printing Method. Sensors, 2020, 20, 1559.	3.8	8
29	A Design and Fabrication Method for a Heterogeneous Model of 3D Bio-Printing. IEEE Access, 2017, 5, 5347-5353.	4.2	7
30	Synthesizing Ag ⁺ : MgS, Ag ⁺ : Nb ₂ S ₅ , Sm ³⁺ : Y ₂ S ₃ , and Sm ³⁺ : Er ₂ S ₃ , and Sm ³⁺ : Er ₂ S ₃ , and Sm ³⁺ : Er ₂ S ₃ , and Sm ³⁺ : Er ₂	3. 5	6
31	Recent Advances in Cryogenic 3D Printing Technologies. Advanced Engineering Materials, 2022, 24, .	3.5	6
32	An electrohydrodynamic (EHD) printing method with nanosilver ink for flexible electronics. International Journal of Modern Physics B, 2020, 34, 2050154.	2.0	5
33	A liquid molding method for the fabrication of microfluidic devices based on a drop-on-demand generation of patterned substrates. Microsystem Technologies, 2017, 23, 4543-4551.	2.0	3
34	Synthesis of Holmium-Oxide Nanoparticles for Near-Infrared Imaging and Dye-Photodegradation. Molecules, 2022, 27, 3522.	3.8	3
35	The Fabrication of Tissue Engineering Scaffolds by Inkjet Printing Technology. Materials Science Forum, 2018, 934, 129-133.	0.3	2