Mukund R Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4109951/publications.pdf

Version: 2024-02-01

623574 454834 38 993 14 citations h-index papers

30 g-index 38 38 38 1009 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deciphering the Genome-Wide Transcriptomic Changes during Interactions of Resistant and Susceptible Genotypes of American Elm with Ophiostoma novo-ulmi. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	:3141r g BT /	Overlock 10 T
2	In Vitro Technologies for American Chestnut (Castanea dentata (Marshall) Borkh) Conservation. Plants, 2022, 11, 464.	1.6	5
3	In Vitro Technology in Plant Conservation: Relevance to Biocultural Diversity. Plants, 2022, 11, 503.	1.6	15
4	Comparative Analysis of Transcriptomes of Ophiostoma novo-ulmi ssp. americana Colonizing Resistant or Sensitive Genotypes of American Elm. Journal of Fungi (Basel, Switzerland), 2022, 8, 637.	1.5	5
5	Root cryobanking: an important tool in plant cryopreservation. Plant Cell, Tissue and Organ Culture, 2021, 144, 49-66.	1.2	13
6	Role of water percolation in reproductive physiology of hazelnut (Corylus spp.). Environmental and Experimental Botany, 2021, 182, 104278.	2.0	5
7	Conservation, propagation, and redistribution (CPR) of Hill's thistle: paradigm for plant species at risk. Plant Cell, Tissue and Organ Culture, 2021, 145, 75-88.	1.2	9
8	Physiological and Molecular Responses of Six Apple Rootstocks to Osmotic Stress. International Journal of Molecular Sciences, 2021, 22, 8263.	1.8	6
9	Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants. International Journal of Molecular Sciences, 2021, 22, 8398.	1.8	4
10	Epigenetic and Genetic Integrity, Metabolic Stability, and Field Performance of Cryopreserved Plants. Plants, 2021, 10, 1889.	1.6	22
11	Improved Conservation of Coffee (Coffea arabica L.) Germplasm via Micropropagation and Cryopreservation. Agronomy, 2021, 11, 1861.	1.3	3
12	Selection and Micropropagation of an Elite Melatonin Rich Tulsi (Ocimum sanctum L.) Germplasm Line. Agronomy, 2021, 11, 207.	1.3	5
13	In Vitro and Cryobiotechnology Approaches to Safeguard Lupinus rivularis Douglas ex Lindl., an Endangered Plant in Canada. Agronomy, 2021, 11, 37.	1.3	10
14	Micropropagation and Cryopreservation of Yukon Draba (Draba yukonensis), a Special Concern Plant Species Endemic to Yukon Territory, Canada. Plants, 2021, 10, 2093.	1.6	5
15	In vitro rooting of hybrid hazelnuts (Corylus avellana × Corylus americana) in a temporary immersion system. Botany, 2020, 98, 343-352.	0.5	8
16	Improved in vitro rooting in liquid culture using a two piece scaffold system. Engineering in Life Sciences, 2020, 20, 126-132.	2.0	12
17	Saving threatened plant species: Reintroduction of Hill's thistle (Cirsium hillii. (Canby) Fernald) to its natural habitat. PLoS ONE, 2020, 15, e0231741.	1.1	11
18	Root cryopreservation to biobank medicinal plants: a case study for Hypericum perforatum L In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 392-402.	0.9	17

#	Article	IF	Citations
19	Development of a reliable Corylus sp. reference database through the implementation of a DNA fingerprinting test. Planta, 2019, 249, 1863-1874.	1.6	13
20	In vitro propagation and reintroduction of golden paintbrush (<i>Castilleja levisecta</i>), a critically imperilled plant species. Canadian Journal of Plant Science, 2018, 98, 762-770.	0.3	5
21	Cryopreservation of the critically endangered golden paintbrush (Castilleja levisecta Greenm.): from nature to cryobank to nature. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 69-78.	0.9	23
22	Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. Journal of Pineal Research, 2018, 64, e12452.	3.4	81
23	Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Methods, 2017, 13, 6.	1.9	40
24	High light intensity stress as the limiting factor in micropropagation of sugar maple (Acer saccharum) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
25	Iron supplementation promotes in vitro shoot induction and multiplication of Baptisia australis. Plant Cell, Tissue and Organ Culture, 2017, 129, 145-152.	1.2	9
26	A simple and efficient method for analysis of plant growth regulators: a new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell, Tissue and Organ Culture, 2017, 131, 459-470.	1,2	19
27	Development of cryopreservation methods for cherry birch (<i>Betula lenta</i> L.), an endangered tree species in Canada. Canadian Journal of Forest Research, 2016, 46, 1284-1292.	0.8	19
28	Cryopreservation of potato microtubers: the critical roles of sucrose and desiccation. Plant Cell, Tissue and Organ Culture, 2016, 124, 649-656.	1,2	18
29	An efficient temporary immersion system for micropropagation of hybrid hazelnut. Botany, 2016, 94, 1-8.	0.5	41
30	Growth regulating properties of isoprene and isoprenoid-based essential oils. Plant Cell Reports, 2016, 35, 91-102.	2.8	6
31	Identification and characterization of serotonin as an anti-browning compound of apple and pear. Postharvest Biology and Technology, 2015, 110, 183-189.	2.9	36
32	Plant Cryopreservation for Biotechnology and Breeding., 2015,, 63-93.		19
33	Role of melatonin in alleviating cold stress in <i><scp>A</scp>rabidopsis thaliana</i> . Journal of Pineal Research, 2014, 56, 238-245.	3.4	334
34	Melatonin enhances the recovery of cryopreserved shoot tips of <scp>A</scp> merican elm (<i><scp>U</scp>lmus americana </i> <scp>L</scp> .). Journal of Pineal Research, 2013, 55, 435-442.	3.4	83
35	Investigating the roles of phenylpropanoids in the growth and development of Zea mays L In Vitro Cellular and Developmental Biology - Plant, 2013, 49, 765-772.	0.9	4
36	In vitro conservation of American elm (<i>Ulmus americana</i>): potential role of auxin metabolism in sustained plant proliferation. Canadian Journal of Forest Research, 2012, 42, 686-697.	0.8	38

MUKUND R SHUKLA

#	Article	IF	CITATIONS
37	Micropropagation of African Violet (Saintpaulia ionantha Wendl.). Methods in Molecular Biology, 2012, 11013, 279-289.	0.4	10
38	In vitro propagation of cherry birch (<i>Betula lenta</i> L.). Canadian Journal of Plant Science, 0, , 571-578.	0.3	17