
Elif Åžnkuytu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4109687/publications.pdf Version: 2024-02-01

ΓΙΙΕ Δ΄ŽΕΝΙΚΗΥΤΗ

#	Article	IF	CITATIONS
1	Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. European Journal of Medicinal Chemistry, 2012, 52, 213-220.	2.6	104
2	Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron, 2013, 69, 1454-1461.	1.0	38
3	Fluorenylidene bridged cyclotriphosphazenes: â€~turn-off' fluorescence probe for Cu2+ and Fe3+ ions. Dalton Transactions, 2013, 42, 14916.	1.6	36
4	Novel Coumarin Substituted Water Soluble Cyclophosphazenes as "Turn-Off―Type Fluorescence Chemosensors for Detection of Fe3+ ions in Aqueous Media. Journal of Fluorescence, 2015, 25, 1819-1830.	1.3	36
5	New hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates as highly selective and sensitive fluorescent chemosensor for Co 2+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 232-238.	2.0	34
6	First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor. Biosensors and Bioelectronics, 2016, 80, 331-338.	5.3	33
7	Monofunctional amines substituted fluorenylidene bridged cyclotriphosphazenes: †Turn-off' fluorescence chemosensors for Cu2+ and Fe3+ ions. Polyhedron, 2015, 101, 223-229.	1.0	28
8	BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers: synthesis and efficient singlet oxygen generators. RSC Advances, 2016, 6, 47600-47606.	1.7	28
9	New one-dimensional mercury(II) coordination polymers built up from dispiro-dipyridyloxy-cyclotriphosphazene: Structural, thermal and UV–Vis absorption properties. Polyhedron, 2019, 161, 104-110.	1.0	27
10	Silver(I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies and investigation of the counteranion effects. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 344-356.	0.5	24
11	A high selective " Turn-Off ―aminopyrene based cyclotriphosphazene fluorescent chemosensors for Fe 3+ /Cu 2+ ions. Inorganica Chimica Acta, 2018, 479, 58-65.	1.2	21
12	A Translational Study of a Silicon Phthalocyanine Substituted with a Histone Deacetylase Inhibitor for Photodynamic Therapy. ACS Omega, 2020, 5, 25854-25867.	1.6	21
13	Novel Bodipy- triazine conjugates: Synthesis and the generation of singlet oxygen. Dyes and Pigments, 2017, 143, 455-462.	2.0	20
14	Structural and fluorescence properties of phenolphthalein bridged cyclotriphosphazatrienes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 881-886.	2.0	18
15	Octa-BODIPY derivative dendrimeric cyclotetraphosphazenes; photophysical properties and fluorescent chemosensor for Co2+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 863-870.	2.0	18
16	Synthesis, photophysical and antioxidant properties of carbazole-based bis-thiosemicarbazones. Research on Chemical Intermediates, 2019, 45, 4487-4499.	1.3	18
17	Characterization of paraben substituted cyclotriphosphazenes, andÂa DNA interaction study with a real-time electrochemical profiling based biosensor. Mikrochimica Acta, 2017, 184, 2307-2315.	2.5	17
18	Cyclotriphosphazene-BODIPY Dyads: Synthesis, halogen atom effect on the photophysical and singlet oxygen generation properties. Inorganica Chimica Acta, 2020, 502, 119342.	1.2	17

Ειιγ Α΄ Σενκυγτυ

#	Article	IF	CITATIONS
19	Investigation of the structural properties of 2-naphthylamine substituted cyclotetraphosphazenes. Polyhedron, 2014, 77, 1-9.	1.0	16
20	New dispiro-dipyridyloxy -cyclotriphosphazene ligand and its Ag(I) coordination polymer: Structure and thermal stability. Journal of Organometallic Chemistry, 2017, 842, 67-73.	0.8	16
21	Synthesis of the first 2-hydroxyanthraquinone substituted cyclotriphosphazenes and their cytotoxic properties. New Journal of Chemistry, 2020, 44, 16733-16740.	1.4	16
22	Electrophoresis and Biosensor-Based DNA Interaction Analysis of the First Paraben Derivatives of Spermine-Bridged Cyclotriphosphazenes. Inorganic Chemistry, 2020, 59, 2288-2298.	1.9	16
23	Structural properties of new spiro-1,3-propanediaminocyclotriphosphazene derivatives. Polyhedron, 2011, 30, 2227-2236.	1.0	15
24	New cyclotriphosphazene based nanotweezers bearing perylene and glycol units and their non-covalent interactions with single walled carbon nanotubes. Journal of Molecular Structure, 2019, 1182, 1-8.	1.8	15
25	The new dispirobino and dispiroansa spermine derivatives of cyclotriphosphazenes. Polyhedron, 2010, 29, 1209-1218.	1.0	14
26	DNA interaction analysis of fluorenylidene double bridged cyclotriphosphazene derivatives. Inorganica Chimica Acta, 2018, 477, 219-226.	1.2	14
27	Azaindole-BODIPYs: Synthesis, fluorescent recognition of hydrogen sulfate anion and biological evaluation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 73-82.	2.0	14
28	Cyclotriphosphazene cored naphthalimide-BODIPY dendrimeric systems: Synthesis, photophysical and antimicrobial properties. Inorganica Chimica Acta, 2020, 502, 119386.	1.2	14
29	Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 26-31.	2.0	13
30	Synthesis and fluorescence properties of cyclophosphazenes containing thiazole or thiadiazole rings. Polyhedron, 2017, 135, 296-302.	1.0	13
31	Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated biosensor and cytotoxicity. Journal of Molecular Structure, 2020, 1209, 127971.	1.8	12
32	Structural and fluorescence properties of 2-naphthylamine substituted cyclotriphosphazenes. Inorganica Chimica Acta, 2014, 423, 489-495.	1.2	11
33	Bodipy decorated triazine chemosensors for Ag+ ions with high selectivity and sensitivity. Journal of Luminescence, 2018, 203, 639-645.	1.5	11
34	Synthesis of BODIPY-cyclotetraphosphazene triad systems and their sensing behaviors toward Co(II) and Cu(II). Inorganica Chimica Acta, 2019, 495, 119009.	1.2	11
35	New perylenebisimide decorated cyclotriphosphazene heavy atom free conjugate as singlet oxygen generator. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117232.	2.0	11
36	Study on the Synthesis, Photophysical Properties and Singlet Oxygen Generation Behavior of Bodipy-Functionalized Cyclotriphosphazenes. Journal of Fluorescence, 2017, 27, 595-601.	1.3	10

Ειιγ Α΄ Σενκυγτυ

#	Article	IF	CITATIONS
37	3-Methylindole-substituted zinc phthalocyanines for photodynamic cancer therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1371-1379.	0.4	10
38	The new water-soluble Schiff base derivative fluorometric chemosensor with highly selective and instantly sensitivity for Fe3+ ion detection in aqueous media. Inorganica Chimica Acta, 2021, 527, 120556.	1.2	10
39	Structural and fluorescence properties of the 2,2′-methylenediphenoxy and 1,1′-methylenedi-2-naphthoxy cyclotriphosphazene derivatives. Journal of Molecular Structure, 2016, 1117, 164-172.	1.8	9
40	Biological Activity of New Cyclophosphazene Derivatives Including Fluorenylideneâ€Bridged Cyclophosphazenes. ChemistrySelect, 2018, 3, 9933-9939.	0.7	9
41	Synthesis, characterization, UV–Vis absorption and cholinesterase inhibition properties of bis-indolyl imine ligand systems. Journal of Molecular Structure, 2020, 1215, 128308.	1.8	9
42	2-Hydroxyanthraquinone substituted cyclotriphosphazenes: Synthesis and cytotoxic activities in cancer cell lines. Inorganica Chimica Acta, 2021, 514, 120005.	1.2	9
43	Mercury(II) coordination polymers based on aniline-substituted tetra pyridyloxy cyclotriphosphazene: Syntheses, characterizations and UV–Vis absorption properties. Polyhedron, 2019, 173, 114138.	1.0	8
44	Synthesis, characterization and photophysical properties of cyclotriphosphazenes including heterocyclic rings. Inorganica Chimica Acta, 2019, 498, 119120.	1.2	8
45	4-Hydroxycoumarin functionalized cyclotriphosphazenes: Synthesis, characterization and fluorescence properties. Inorganica Chimica Acta, 2017, 459, 45-50.	1.2	7
46	Synthesis of a novel N,N',N'-tetraacetyl-4,6-dimethoxyindole-based dual chemosensor for the recognition of Fe3+ and Cu2+ ions. Inorganica Chimica Acta, 2019, 495, 118947.	1.2	7
47	Nucleophilic substitution reactions of phenolphthalein with different substituted cyclotriphosphazene derivatives. Polyhedron, 2013, 63, 60-67.	1.0	6
48	Fluorescence properties of fluorenylidene bridged cyclotriphosphazenes bearing aryloxy groups. Polyhedron, 2015, 102, 741-749.	1.0	6
49	Structural and chemosensor properties of FDA and FDP derivatives of fluorenylidene bridged cyclotetraphosphazenes. Polyhedron, 2016, 115, 247-256.	1.0	6
50	Synthesis, photophysical and antioxidant properties of pyrrolo[3,2-c]carbazole and dipyrrolo[3,2-c:2′,3′-g]carbazole compounds. Research on Chemical Intermediates, 2019, 45, 997-1008.	1.3	6
51	Novel paraben derivatives of tetracyclic spermine cyclotriphosphazenes: synthesis, characterization and biosensor based DNA interaction analysis. New Journal of Chemistry, 2020, 44, 18942-18953.	1.4	6
52	Design of novel photosensitizers and controlled singlet oxygen generation for photodynamic therapy. New Journal of Chemistry, 2021, 45, 16298-16305.	1.4	6
53	Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes. Turkish Journal of Chemistry, 2020, 44, 64-73.	0.5	5
54	Zn(II) phthalocyanine-cyclotriphosphazene dyad: synthesis, characterization, photophysical, and photochemical properties. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 857-866.	0.8	5

Elif Åženkuytu

#	Article	IF	CITATIONS
55	Synthesis, characterization and cytotoxic activity studies on cancer cell lines of new paraben-decorated monospiro-cyclotriphosphazenes. New Journal of Chemistry, 2022, 46, 2453-2464.	1.4	4
56	Novel probes for selective fluorometric sensing of Fe(II) and Fe(III) based on BODIPY dyes. Journal of the Turkish Chemical Society, Section A: Chemistry, 2019, 6, 207-216.	0.4	3
57	Synthesis, characterization, and photophysical properties of paraben substituted cyclotriphosphazenes with hydrophilic side groups. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 570-579.	0.8	2
58	Dual color triads: synthesis, photophysics and applications in live cell imaging. New Journal of Chemistry, 2021, 45, 9984-9994.	1.4	2
59	Novel Aminopyrene Substituted Monospiro/Dispiro Cyclotriphosphazenes: Synthesis, Characterization and Chemosensor Properties. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2018, 14, 209-216.	0.1	2
60	The bioactive new type paraben decorated dispiro-cyclotriphosphaze compounds: synthesis, characterization and cytotoxic activity studies. Journal of Molecular Structure, 2022, 1255, 132438.	1.8	2
61	DNA interaction analysis with automated biosensor of paraben derivative s-triazines. Journal of Molecular Structure, 2020, 1222, 128925.	1.8	1
62	3-Methylindole-substituted zinc phthalocyanines for photodynamic cancer therapy. , 2021, , 318-326.		0