Patrick Schleppi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4109136/publications.pdf

Version: 2024-02-01

93 papers

4,657 citations

35 h-index 102487 66 g-index

99 all docs 99 docs citations 99 times ranked 5205 citing authors

#	Article	IF	CITATIONS
1	Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 1999, 398, 145-148.	27.8	676
2	Title is missing!. Biogeochemistry, 2000, 50, 137-161.	3.5	206
3	Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ€analysis of ¹⁵ N tracer field studies. Ecology, 2012, 93, 1816-1829.	3.2	192
4	Regional Assessment of N Saturation using Foliar and Root $\$$ varvec $\{delta\}^{f 15}_{f N}$. Biogeochemistry, 2006, 80, 143-171.	3.5	172
5	Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agricultural and Forest Meteorology, 2007, 144, 236-242.	4.8	159
6	Predicting the Effects of Atmospheric Nitrogen Deposition in Conifer Stands: Evidence from the NITREX Ecosystem-Scale Experiments. Ecosystems, 1998, 1, 352-360.	3.4	153
7	Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research, 2010, 129, 543-562.	2.5	153
8	Rare earth elements in soil and in soil-grown plants. Plant and Soil, 1998, 199, 267-273.	3.7	148
9	Central <scp>E</scp> uropean hardwood trees in a highâ€ <scp>CO</scp> ₂ future: synthesis of an 8â€year forest canopy <scp>CO</scp> ₂ enrichment project. Journal of Ecology, 2013, 101, 1509-1519.	4.0	141
10	Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 2010, 30, 346-360.	3.1	107
11	Soil warming opens the nitrogen cycle at the alpine treeline. Global Change Biology, 2017, 23, 421-434.	9.5	96
12	Input-output budgets at the NITREX sites. Forest Ecology and Management, 1998, 101, 57-64.	3.2	90
13	Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images. Agricultural and Forest Meteorology, 2014, 197, 158-168.	4.8	86
14	Effects of Redox Conditions and Flow Processes on the Mobility of Dissolved Organic Carbon and Nitrogen in a Forest Soil. Journal of Environmental Quality, 2000, 29, 288-297.	2.0	84
15	Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland. Forest Ecology and Management, 1998, 101, 177-185.	3.2	77
16	Runoff-driven export of particulate organic carbon from soil in temperate forested uplands. Earth and Planetary Science Letters, 2013, 365, 198-208.	4.4	77
17	The response of methane and nitrous oxide fluxes to forest change in Europe. Biogeosciences, 2012, 9, 3999-4012.	3.3	74
18	Growth and carbon relations of mature <i>Picea abies</i> trees under 5Âyears of freeâ€eir CO ₂ enrichment. Journal of Ecology, 2016, 104, 1720-1733.	4.0	68

#	Article	IF	CITATIONS
19	Contrasting dynamics of dissolved inorganic and organic nitrogen in soil and surface waters of forested catchments with Gleysols. Geoderma, 2001, 100, 173-192.	5.1	66
20	Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: a summary of results. Environmental Pollution, 1998, 102, 433-437.	7.5	64
21	Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environmental Pollution, 2009, 157, 2030-2036.	7.5	63
22	Increased rates of denitrification in nitrogen-treated forest soils. Forest Ecology and Management, 2000, 137, 113-119.	3.2	61
23	Title is missing!. Water, Air, and Soil Pollution, 1999, 116, 129-134.	2.4	60
24	The accumulation of the rare earth elements and of scandium in successive needle age classes of Norway spruce. Biological Trace Element Research, 1994, 41, 13-29.	3.5	56
25	Pathways and dynamics of 15NO3â^ and 15NH4+ applied in a mountain Picea abies forest and in a nearby meadow in central Switzerland. Soil Biology and Biochemistry, 2006, 38, 1645-1657.	8.8	56
26	Does exceeding the critical loads for nitrogen alter nitrate leaching, the nutrient status of trees and their crown condition at Swiss Long-term Forest Ecosystem Research (LWF) sites?. European Journal of Forest Research, 2010, 129, 443-461.	2.5	54
27	Atmospheric nitrogen deposition and canopy retention influences on photosynthetic performance at two high nitrogen deposition Swiss forests. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 17216.	1.6	54
28	Soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O in a mountain spruce forest subjected to long-term N addition and to tree girdling. Agricultural and Forest Meteorology, 2013, 181, 61-68.	4.8	52
29	The Role of Rapid Flow Paths for Nitrogen Transformation in a Forest Soil A Field Study with Micro Suction Cups. Soil Science Society of America Journal, 1999, 63, 1915-1923.	2.2	47
30	Estimating leaf area index of mature temperate forests using regressions on site and vegetation data. Forest Ecology and Management, 2011, 261, 601-610.	3.2	47
31	Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated <scp>CO</scp> ₂ concentration (canopy <scp>FACE</scp>). Global Change Biology, 2012, 18, 757-768.	9.5	47
32	Flood pulses control soil nitrogen cycling in a dynamic river floodplain. Geoderma, 2014, 228-229, 14-24.	5.1	45
33	Multivariate interpretation of the foliar chemical composition of Norway spruce (Picea abies). Plant and Soil, 2000, 219, 251-262.	3.7	44
34	Retention and Leaching of Elevated N Deposition in a Forest Ecosystem with Gleysols. Water, Air, and Soil Pollution, 2001, 129, 119-142.	2.4	44
35	Flow of Deposited Inorganic N in Two Gleysol-dominated Mountain Catchments Traced with 15NO3â° and 15NH4+. Biogeochemistry, 2005, 76, 453-475.	3.5	39
36	Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow. Tree Physiology, 2002, 22, 613-623.	3.1	38

#	Article	IF	Citations
37	Seasonality of the Na/Cl ratio in precipitation and implications of canopy leaching in validating chemical analyses of throughfall samples. Atmospheric Environment, 2008, 42, 9106-9117.	4.1	37
38	Structural diversity of abandoned chestnut (Castanea sativa Mill.) dominated forests: Implications for forest management. Forest Ecology and Management, 2013, 291, 326-335.	3.2	37
39	Nitrate Leaching From a Mountain Forest Ecosystem with Gleysols Subjected to Experimentally Increased N Deposition. Water, Air and Soil Pollution, 2004, 4, 453-467.	0.8	33
40	Vertical Redistribution of Soil Organic Carbon Pools After Twenty Years of Nitrogen Addition in Two Temperate Coniferous Forests. Ecosystems, 2019, 22, 379-400.	3.4	33
41	Total deposition of nitrogen in Swiss forests: Comparison of assessment methods and evaluation of changes over two decades. Atmospheric Environment, 2019, 198, 335-350.	4.1	32
42	Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling. Journal of Hydrology, 2006, 319, 266-281.	5.4	30
43	¹⁵ N immobilization in forest soil: a sterilization experiment coupled with ¹⁵ CPMAS NMR spectroscopy. European Journal of Soil Science, 2008, 59, 467-475.	3.9	30
44	Nitrate leaching from a sub-alpine coniferous forest subjected to experimentally increased N deposition for 20Âyears, and effects of tree girdling and felling. Biogeochemistry, 2017, 134, 319-335.	3.5	30
45	Concentrations of nutritional and trace elements in needles of Norway spruce (Picea abies [L.] Karst.) as functions of the needle age class. Plant and Soil, 1995, 168-169, 305-312.	3.7	29
46	Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Tree Physiology, 2012, 32, 1471-1481.	3.1	28
47	Nitrex: The timing of response of coniferous forest ecosystems to experimentally-changed nitrogen deposition. Water, Air, and Soil Pollution, 1995, 85, 1623-1628.	2.4	27
48	Accuracy and precision of different sampling strategies and flux integration methods for runoff water: comparisons based on measurements of the electrical conductivity. Hydrological Processes, 2006, 20, 395-410.	2.6	27
49	Determination of total dissolved nitrogen by persulfate oxidation. Journal of Plant Nutrition and Soil Science, 2000, 163, 81-82.	1.9	26
50	Equations to compensate for the temperature effect on readings from dielectric Decagon MPS-2 and MPS-6 water potential sensors in soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 749-759.	1.9	26
51	Citric acid traps to replace sulphuric acid in the ammonia diffusion of dilute water samples for 15N analysis. Rapid Communications in Mass Spectrometry, 2006, 20, 629-634.	1.5	24
52	Variability in & mp; lt; sup & amp; gt; 14 & amp; lt; sup & amp; gt; C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients. Biogeosciences, 2016, 13, 3427-3439.	3.3	23
53	A robust leaf area index algorithm accounting for the expected errors in gap fraction observations. Agricultural and Forest Meteorology, 2018, 248, 197-204.	4.8	23
54	Soil Nitrogen Dynamics in a River Floodplain Mosaic. Journal of Environmental Quality, 2012, 41, 2033-2045.	2.0	22

#	Article	IF	CITATIONS
55	Estimating belowâ€canopy light regimes using airborne laser scanning: An application to plant community analysis. Ecology and Evolution, 2019, 9, 9149-9159.	1.9	22
56	Shade tolerance of Ailanthus altissima revisited: novel insights from southern Switzerland. Biological Invasions, 2017, 19, 455-461.	2.4	21
57	Resistant Soil Microbial Communities Show Signs of Increasing Phosphorus Limitation in Two Temperate Forests After Long-Term Nitrogen Addition. Frontiers in Forests and Global Change, 2019, 2,	2.3	21
58	Dynamics of deep soil carbon – insights from ¹⁴ C time series across a climatic gradient. Biogeosciences, 2019, 16, 3233-3246.	3.3	20
59	The concentration of Ca, Sr, Ba and Mn in successive needle age classes of Norway spruce [Picea abies (L.) Karst.]. Trees - Structure and Function, 1995, 10, 31.	1.9	19
60	Seasonal variations of throughfall chemistry in pure and mixed stands of Oriental beech (Fagus) Tj ETQq0 0 0 rgl	3T <u>/O</u> verlo 2.0	ck 10 Tf 50 5
61	Only Minor Changes in the Soil Microbiome of a Sub-alpine Forest After 20 Years of Moderately Increased Nitrogen Loads. Frontiers in Forests and Global Change, 2020, 3, .	2.3	19
62	Reassessment of the NH ₄ NO ₃ thermal decomposition technique for calibration of the N ₂ O isotopic composition. Rapid Communications in Mass Spectrometry, 2016, 30, 2487-2496.	1.5	17
63	Nitrogen dynamics in oak model ecosystems subjected to air warming and drought on two different soils. Plant Biology, 2013, 15, 220-229.	3.8	16
64	Long-term tracing of whole catchment 15N additions in a mountain spruce forest: measurements and simulations with the TRACE model. Trees - Structure and Function, 2012, 26, 1683-1702.	1.9	15
65	The mobility of nitrogen across treeâ€rings of Norway spruce (<i>Picea abies</i> L.) and the effect of extraction method on treeâ€ring δ ¹⁵ N and δ ¹³ C values. Rapid Communications in Mass Spectrometry, 2014, 28, 1258-1264.	1.5	15
66	Vertical light transmission profiles in structured mixed deciduous forest canopies assessed by UAV-based hemispherical photography and photogrammetric vegetation height models. Agricultural and Forest Meteorology, 2020, 281, 107843.	4.8	15
67	Lessons learned from a longâ€ŧerm irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. Ecological Monographs, 2022, 92, e1507.	5.4	15
68	The concentrations of K, Rb and Cs in spruce needles (Picea abies Karst.) and in the associated soils. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 499-504.	0.4	14
69	Variation of the rare earth element concentrations in the soil, soil extract and in individual plants from the same site. Journal of Radioanalytical and Nuclear Chemistry, 1998, 231, 101b-106.	1.5	14
70	Forest Management and the Water Cycle. Ecological Studies, 2011, , .	1.2	14
71	The fate of nitrogen inputs in a warmer alpine treeline ecosystem: a ¹⁵ N labelling study. Journal of Ecology, 2017, 105, 1723-1737.	4.0	14
72	Increased Nitrogen Availability in the Soil Under Mature Picea abies Trees Exposed to Elevated CO2 Concentrations. Frontiers in Forests and Global Change, 2019, 2, .	2.3	14

#	Article	IF	CITATIONS
73	Retention and hydrolysable fraction of atmospherically deposited nitrogen in two contrasting forest soils in Switzerland. European Journal of Soil Science, 2010, 61, 197-206.	3.9	13
74	Concentrationâ€Discharge Relationships of Dissolved Rhenium in Alpine Catchments Reveal Its Use as a Tracer of Oxidative Weathering. Water Resources Research, 2021, 57, e2021WR029844.	4.2	13
7 5	Leaf Morphological Traits and Leaf Nutrient Concentrations of European Beech Across a Water Availability Gradient in Switzerland. Frontiers in Forests and Global Change, 2020, 3, .	2.3	12
76	Runoff processes in catchments with a small scale topography. Physics and Chemistry of the Earth, 1996, 21, 177-181.	0.3	11
77	Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data–model comparison. Biogeosciences, 2019, 16, 2771-2793.	3.3	10
78	Rubidium and cesium in spruce needles. Biological Trace Element Research, 1994, 43-45, 195-205.	3.5	9
79	The long-term fate of deposited nitrogen in temperate forest soils. Biogeochemistry, 2020, 150, 1-15.	3.5	8
80	QUALITY WOOD PRODUCTION FROM CHESTNUT (CASTANEA SATIVA MILL.) COPPICE FORESTS - COMPARISON BETWEEN DIFFERENT SILVICULTURAL APPROACHES. Acta Horticulturae, 2010, , 683-692.	0.2	8
81	Dynamics of Atmospheric Nitrogen Deposition in a Temperate Calcareous Forest Soil. Journal of Environmental Quality, 2008, 37, 2012-2021.	2.0	7
82	Responses of soil Collembola to long-term atmospheric CO2 enrichment in a mature temperate forest. Environmental Pollution, 2013, 173, 23-28.	7.5	7
83	Solar Radiation in Forests: Theory for Hemispherical Photography. Managing Forest Ecosystems, 2017, , 15-52.	0.9	7
84	Variation in Leaf Morphological Traits of European Beech and Norway Spruce Over Two Decades in Switzerland. Frontiers in Forests and Global Change, 2022, 4, .	2.3	7
85	Photosynthate Partitioning in Flowering Soybeans Subjected to a Cold Stress. Journal of Plant Physiology, 1990, 136, 556-563.	3.5	6
86	GROWTH DYNAMICS AND LEAF AREA INDEX IN CHESTNUT COPPICES SUBJECTED TO A NEW SILVICULTURAL APPROACH: SINGLE-TREE-ORIENTED MANAGEMENT. Acta Horticulturae, 2014, , 121-128.	0.2	6
87	Some properties of the ash from spruce needles. Communications in Soil Science and Plant Analysis, 1993, 24, 1557-1566.	1.4	3
88	Forested Water Catchments in a Changing Environment. Ecological Studies, 2010, , 89-110.	1.2	3
89	Nitrogen deposition and carbon sequestration. Nature, 1999, 400, 630-630.	27.8	2
90	Experimental Design and Interpretation of Terrestrial Ecosystem Studies Using 15N Tracers: Practical and Statistical Considerations. Frontiers in Environmental Science, 2021, 9, .	3.3	2

#	Article	IF	CITATIONS
91	Nitrate Leaching from a Mountain Forest Ecosystem with Gleysols Subjected to Experimentally Increased N Deposition. , 2004, , 453-467.		1
92	Dépôts atmosphériques azotés et leurs effets en forêt: un bilan des sites d'observation à long terme. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 343-354.	0.1	1
93	Determination of total dissolved nitrogen by persulfate oxidation. Journal of Plant Nutrition and Soil Science, 2000, 163, 81-82.	1.9	0