Chunsheng Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4108707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017, 576, 234-241.	8.0	152
2	Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. Ecology, 2017, 98, 1779-1786.	3.2	47
3	Responses of soil N ₂ O emissions and their abiotic and biotic drivers to altered rainfall regimes and coâ€occurring wet N deposition in a semiâ€arid grassland. Clobal Change Biology, 2021, 27, 4894-4908.	9.5	40
4	Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China. Ecological Engineering, 2016, 95, 763-769.	3.6	26
5	Summer drought decreases <i>Leymus chinensis</i> productivity through constraining the bud, tiller and shoot production. Journal of Agronomy and Crop Science, 2019, 205, 554-561.	3.5	25
6	Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses. Soil Science and Plant Nutrition, 2009, 55, 680-684.	1.9	22
7	Optimum Harvest Time of <i>Vicia cracca</i> in Relation to High Seed Quality during Pod Development. Crop Science, 2008, 48, 709-715.	1.8	19
8	Responses of two contrasting salineâ€alkaline grassland communities to nitrogen addition during early secondary succession. Journal of Vegetation Science, 2015, 26, 686-696.	2.2	18
9	The Influence of Precipitation Regimes and Elevated CO2 on Photosynthesis and Biomass Accumulation and Partitioning in Seedlings of the Rhizomatous Perennial Grass Leymus chinensis. PLoS ONE, 2014, 9, e103633.	2.5	14
10	EFFECT OF ALKALINE POTASSIUM AND SODIUM SALTS ON GROWTH, PHOTOSYNTHESIS, IONS ABSORPTION AND SOLUTES SYNTHESIS OF WHEAT SEEDLINGS. Experimental Agriculture, 2014, 50, 144-157.	0.9	14
11	Impacts of Fall Nitrogen Application on Seed Production in Leymus chinensis , a Rhizomatous Perennial Grass. Agronomy Journal, 2013, 105, 1378-1384.	1.8	13
12	Trade-offs and synergies between seed yield, forage yield, and N-related disservices for a semi-arid perennial grassland under different nitrogen fertilization strategies. Biology and Fertility of Soils, 2019, 55, 497-509.	4.3	11
13	Productivity of Leymus chinensis grassland is co-limited by water and nitrogen and resilient to climate change. Plant and Soil, 2022, 474, 411-422.	3.7	9
14	Lemmas induce dormancy but help the seed of <i>Leymus chinensis</i> to resist drought and salinity conditions in Northeast China. PeerJ, 2016, 4, e1485.	2.0	8
15	Resistance strategies of <i>Phragmites australis</i> (common reed) to Pb pollution in flood and drought conditions. PeerJ, 2018, 6, e4188.	2.0	5
16	Moderately prolonged dry intervals between precipitation events promote production in Leymus chinensis in a semi-arid grassland of Northeast China. BMC Plant Biology, 2021, 21, 147.	3.6	5
17	SALT AND ALKALI STRESSES EFFECTS ON CONTENTS OF ORGANIC ACIDS COMPONENTS IN WHEAT SEEDLINGS. Journal of Plant Nutrition, 2013, 36, 1056-1064.	1.9	4
18	Rhizomes Help the Forage GrassLeymus chinensisto Adapt to the Salt and Alkali Stresses. Scientific World Journal, The, 2014, 2014, 1-15.	2.1	4

CHUNSHENG MU

#	Article	IF	CITATIONS
19	Optimum harvest maturity for <i>Leymus chinensis</i> seed. Biology Open, 2016, 5, 720-725.	1.2	4
20	Larger Seed Size Shows Less Germination and Seedling Growth Decline Caused by Seed Ageing under Na 2 CO 3 Stress in Leymus chinensis. Agronomy Journal, 2019, 111, 2326-2331.	1.8	4
21	Improved Utilization of Nitrate Nitrogen Through Within-Leaf Nitrogen Allocation Trade-Offs in Leymus chinensis. Frontiers in Plant Science, 2022, 13, 870681.	3.6	3
22	The tolerance of growth and clonal propagation of Phragmites australis (common reeds) subjected to lead contamination under elevated CO2conditions. RSC Advances, 2015, 5, 55527-55535.	3.6	1
23	Strategies for lead distribution in organs of Phragmites australis (Cav.) Trin. ex Steud. (Common reed) subjected to Pb pollution in flood and drought environments. Hydrobiologia, 2018, 819, 53-66.	2.0	1