Thomas Barrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4108566/publications.pdf

Version: 2024-02-01

26 papers 1,012 citations

567281 15 h-index 552781 26 g-index

26 all docs

26 docs citations

26 times ranked 736 citing authors

#	Article	IF	CITATIONS
1	Objectives and status of EUROfusion DEMO blanket studies. Fusion Engineering and Design, 2016, 109-111, 1199-1206.	1.9	168
2	European DEMO divertor target: Operational requirements and material-design interface. Nuclear Materials and Energy, 2016, 9, 171-176.	1.3	119
3	Conceptual design studies for the European DEMO divertor: Rationale and first results. Fusion Engineering and Design, 2016, 109-111, 1598-1603.	1.9	108
4	European divertor target concepts for DEMO: Design rationales and high heat flux performance. Nuclear Materials and Energy, 2018, 16, 1-11.	1.3	101
5	Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components. Fusion Engineering and Design, 2016, 109-111, 917-924.	1.9	74
6	The DEMO wall load challenge. Nuclear Fusion, 2017, 57, 046002.	3.5	65
7	Progress in EU Breeding Blanket design and integration. Fusion Engineering and Design, 2018, 136, 782-792.	1.9	50
8	Divertor of the European DEMO: Engineering and technologies for power exhaust. Fusion Engineering and Design, 2022, 175, 113010.	1.9	47
9	Wall protection strategies for DEMO plasma transients. Fusion Engineering and Design, 2018, 136, 410-414.	1.9	39
10	High-heat-flux technologies for the European demo divertor targets: State-of-the-art and a review of the latest testing campaign. Journal of Nuclear Materials, 2021, 544, 152670.	2.7	36
11	Enhancing the DEMO divertor target by interlayer engineering. Fusion Engineering and Design, 2015, 98-99, 1216-1220.	1.9	28
12	The development and testing of the thermal break divertor monoblock target design delivering 20 MW m ^{â^2} heat load capability. Physica Scripta, 2017, T170, 014042.	2.5	25
13	A hybrid analysis procedure enabling elastic design rule assessment of monoblock-type divertor components. Fusion Engineering and Design, 2018, 135, 154-164.	1.9	20
14	Designs and technologies for plasma-facing wall protection in EU DEMO. Nuclear Fusion, 2019, 59, 056019.	3.5	17
15	Progress in high heat flux testing of European DEMO divertor mock-ups. Fusion Engineering and Design, 2019, 146, 216-219.	1.9	17
16	European DEMO first wall shaping and limiters design and analysis status. Fusion Engineering and Design, 2020, 158, 111676.	1.9	15
17	Visualisation of subcooled pool boiling in nanofluids. Fusion Engineering and Design, 2019, 146, 153-156.	1.9	13
18	The design and optimisation of a monoblock divertor target for DEMO using thermal break interlayer. Fusion Engineering and Design, 2020, 154, 111497.	1.9	12

#	Article	lF	CITATION
19	Virtual Engineering of a Fusion Reactor: Application to Divertor Design, Manufacture, and Testing. IEEE Transactions on Plasma Science, 2019, 47, 889-896.	1.3	11
20	High heat flux test results for a thermal break DEMO divertor target and subsequent design and manufacture development. Fusion Engineering and Design, 2019, 146, 1657-1660.	1.9	10
21	DEMO First Wall misalignment study. Fusion Engineering and Design, 2019, 146, 2577-2580.	1.9	10
22	Ultrasonic test results before and after high heat flux testing on W-monoblock mock-ups of EU-DEMO vertical target. Fusion Engineering and Design, 2020, 160, 111886.	1.9	9
23	A New Facility for Combined-Load Testing of Fusion Reactor In-Vessel Components. IEEE Transactions on Plasma Science, 2020, 48, 1432-1438.	1.3	7
24	Measurement of flow velocity during turbulent natural convection in nanofluids. Fusion Engineering and Design, 2017, 123, 72-76.	1.9	6
25	Development and testing of an additively manufactured lattice for DEMO limiters. Nuclear Fusion, 2022, 62, 036017.	3.5	3
26	Characterising the impact of castellations on the efficiency of induction heating during testing in the HIVE facility. Fusion Engineering and Design, 2019, 146, 2040-2044.	1.9	2