Karsten Rebner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4108505/publications.pdf Version: 2024-02-01

KADSTEN PERNED

#	Article	IF	CITATIONS
1	Hyperspectral Imaging: A Review of Best Practice, Performance and Pitfalls for in-line and on-line Applications. Journal of Near Infrared Spectroscopy, 2012, 20, 483-508.	1.5	127
2	Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Analytical and Bioanalytical Chemistry, 2017, 409, 4321-4333.	3.7	40
3	Oxygen plasma surface treatment of polymer films—Pellethane 55DE and EPR-g-VTMS. Applied Surface Science, 2021, 536, 147782.	6.1	29
4	A novel LEDâ€based 2Dâ€fluorescence spectroscopy system for inâ€line monitoring of Chinese hamster ovary cell cultivations – Part I. Engineering in Life Sciences, 2019, 19, 352-362.	3.6	25
5	Dark-field scattering microscopy for spectral characterization of polystyrene aggregates. Optics Express, 2010, 18, 3116.	3.4	24
6	Penetration of Light into Multiple Scattering Media: Model Calculations and Reflectance Experiments. Part I: The Axial Transfer. Applied Spectroscopy, 2012, 66, 934-943.	2.2	22
7	A Process Analytical Concept for In-Line FTIR Monitoring of Polysiloxane Formation. Polymers, 2020, 12, 2473.	4.5	17
8	Elastic and inelastic light scattering spectroscopy and its possible use for label-free brain tumor typing. Analytical and Bioanalytical Chemistry, 2017, 409, 6613-6623.	3.7	12
9	Direct optical detection of cell density and viability of mammalian cells by means of UV/VIS spectroscopy. Analytical and Bioanalytical Chemistry, 2020, 412, 3359-3371.	3.7	12
10	Penetration of Light into Multiple Scattering Media: Model Calculations and Reflectance Experiments. Part II: The Radial Transfer. Applied Spectroscopy, 2013, 67, 385-395.	2.2	11
11	Effects of process parameters on silane grafting of liquid ethylene-propylene copolymer by reactive extrusion as quantified by response surface methodology. Polymer, 2020, 202, 122601.	3.8	10
12	Auger electron spectroscopy and UV–Vis spectroscopy in combination with multivariate curve resolution analysis to determine the Cu2O/CuO ratios in oxide layers on technical copper surfaces. Applied Surface Science, 2019, 486, 354-361.	6.1	9
13	Formalin Fixation as Tissue Preprocessing for Multimodal Optical Spectroscopy Using the Example of Human Brain Tumour Cross Sections. Journal of Spectroscopy, 2021, 2021, 1-14.	1.3	9
14	Comparative Raman study of transparent and turbid materials: models and experiments in the remote sensing mode. Analytical and Bioanalytical Chemistry, 2017, 409, 673-681.	3.7	7
15	Pigmentation of White, Brown, and Green Chicken Eggshells Analyzed by Reflectance, Transmittance, and Fluorescence Spectroscopy. ChemistryOpen, 2019, 8, 1084-1093.	1.9	7
16	Characterization of Oxide Layers on Technical Copper Material Using Ultraviolet Visible (UV-Vis) Spectroscopy as a Rapid On-Line Analysis Tool. Applied Spectroscopy, 2019, 73, 59-66.	2.2	7
17	Comparison of Whiskbroom and Pushbroom darkfield elastic light scattering spectroscopic imaging for head and neck cancer identification in a mouse model. Analytical and Bioanalytical Chemistry, 2021, 413, 7363-7383.	3.7	7
18	Hyperspectral backscatter imaging: a label-free approach to cytogenetics. Analytical and Bioanalytical Chemistry, 2016, 408, 5701-5709.	3.7	6

Karsten Rebner

#	Article	IF	CITATIONS
19	Characterisation of oxide layers on technical copper based on visible hyperspectral imaging. Journal of Spectral Imaging, 0, , .	0.0	5
20	UV Hyperspectral Imaging as Process Analytical Tool for the Characterization of Oxide Layers and Copper States on Direct Bonded Copper. Sensors, 2021, 21, 7332.	3.8	5
21	Simultaneous Determination of Droplet Size, pH Value and Concentration to Evaluate the Aging Behavior of Metalworking Fluids. Sensors, 2021, 21, 8299.	3.8	5
22	Extension of solid immersion lens technology to super-resolution Raman microscopy. Nanospectroscopy, 2014, 1, .	0.7	4
23	Use of Hyperspectral Imaging for the Quantification of Organic Contaminants on Copper Surfaces for Electronic Applications. Sensors, 2021, 21, 5595.	3.8	3
24	Water Jacket Systems for Temperature Control of Petri Dish Cell Culture Chambers. Applied Sciences (Switzerland), 2019, 9, 621.	2.5	2
25	Exploring the hidden depth by confocal Raman experiments with variable objective aperture and magnification. Analytical and Bioanalytical Chemistry, 2021, 413, 7093-7106.	3.7	2
26	Quantifying flux residues after soldering on technical copper using ultraviolet visible (UV–Vis) spectroscopy and multivariate analysis. Microelectronics Reliability, 2021, 125, 114367.	1.7	1
27	Improved Process Control by Using the Effective Scattering Coefficients to Determine the Fat Content in Homogenized Cow-Based Milk with Multivariate Data Modeling. ACS Food Science & Technology, 2022, 2, 548-557.	2.7	1