
Zhengyong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Optics Express, 2018, 26, 7148.	1.7	248
2	Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Optics Express, 2017, 25, 11223.	1.7	191
3	Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Optics Express, 2020, 28, 12487.	1.7	179
4	Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon, 2021, 174, 617-624.	5.4	126
5	Terahertz switching between broadband absorption and narrowband absorption. Optics Express, 2020, 28, 2037.	1.7	106
6	Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration. Optics Express, 2020, 28, 11780.	1.7	98
7	Terahertz toroidal metamaterial with tunable properties. Optics Express, 2019, 27, 5792.	1.7	94
8	Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption. Optics Express, 2021, 29, 21551.	1.7	91
9	Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide. Optics Express, 2021, 29, 23331.	1.7	91
10	Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Optics Express, 2020, 28, 6565.	1.7	79
11	Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces. Applied Physics Express, 2018, 11, 082203.	1.1	76
12	Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces. Materials Letters, 2019, 236, 350-353.	1.3	75
13	Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency. Optics Express, 2019, 27, 25196.	1.7	74
14	Pattern Synthesis of Unequally Spaced Linear Arrays Including Mutual Coupling Using Iterative FFT via Virtual Active Element Pattern Expansion. IEEE Transactions on Antennas and Propagation, 2017, 65, 3950-3958.	3.1	69
15	Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. Journal of Applied Physics, 2020, 128, .	1.1	64
16	Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces. Materials Letters, 2019, 234, 138-141.	1.3	61
17	Terahertz graphene metasurfaces for cross-polarized deflection, focusing, and orbital angular momentum. Optics Express, 2022, 30, 25498.	1.7	56
18	A new method for obtaining transparent electrodes. Optics Express, 2012, 20, 22770.	1.7	52

Zhengyong Song

#	Article	IF	CITATIONS
19	Making a continuous metal film transparent via scattering cancellations. Applied Physics Letters, 2012, 101, .	1.5	52
20	Terahertz mode switching of spin reflection and vortex beams based on graphene metasurfaces. Optics and Laser Technology, 2022, 153, 108278.	2.2	52
21	Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces. IEEE Photonics Journal, 2019, 11, 1-7.	1.0	50
22	Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Optics Communications, 2020, 464, 125494.	1.0	44
23	Ultra-broadband wide-angle terahertz absorber realized by a doped silicon metamaterial. Optics Communications, 2020, 471, 125835.	1.0	35
24	Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab. Optics Express, 2016, 24, 16961.	1.7	33
25	Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration. Optics Express, 2017, 25, 898.	1.7	33
26	Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays. Materials Letters, 2015, 159, 269-272.	1.3	32
27	Graphene-based terahertz metamirror with wavefront reconfiguration. Optics Express, 2021, 29, 39574.	1.7	30
28	Wide-angle polarization-insensitive transparency of a continuous opaque metal film for near-infrared light. Optics Express, 2014, 22, 6519.	1.7	26
29	Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping. Optics Express, 2013, 21, 18178.	1.7	25
30	High-Efficiency Broadband Cross Polarization Converter for Near-Infrared Light Based on Anisotropic Plasmonic Meta-surfaces. Plasmonics, 2016, 11, 61-64.	1.8	24
31	Tunable Isotropic Absorber With Phase Change Material VO ₂ . IEEE Nanotechnology Magazine, 2020, 19, 197-200.	1.1	24
32	Switchable bifunctional metamaterial for terahertz anomalous reflection and broadband absorption. Physica Scripta, 2021, 96, 115506.	1.2	20
33	Physics of the zero- photonic gap: fundamentals and latest developments. Nanophotonics, 2012, 1, 181-198.	2.9	19
34	Terahertz transparency of optically opaque metallic films. Europhysics Letters, 2014, 106, 27005.	0.7	19
35	Tunable Toroidal Dipolar Resonance for Terahertz Wave Enabled by a Vanadium Dioxide Metamaterial. IEEE Photonics Journal, 2019, 11, 1-5.	1.0	19
36	Vanadium Dioxide-Based Bifunctional Metamaterial for Terahertz Waves. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	19

ZHENGYONG SONG

#	Article	IF	CITATIONS
37	Terahertz Dynamic Beam Steering Based on Graphene Coding Metasurfaces. IEEE Photonics Journal, 2021, 13, 1-9.	1.0	19
38	Wideband high-efficient linear polarization rotators. Frontiers of Physics, 2018, 13, 1.	2.4	18
39	Multipole plasmons in graphene nanoellipses. Physica B: Condensed Matter, 2018, 530, 142-146.	1.3	18
40	Manipulating polarization and electromagnetically induced transparency in a switchable metamaterial. Optical Materials, 2020, 105, 109972.	1.7	18
41	Adaptive Decoupling Using Tunable Metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2730-2739.	2.9	17
42	Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface. Materials Letters, 2018, 223, 90-92.	1.3	16
43	Reflective and transmissive cross-polarization converter for terahertz wave in a switchable metamaterial. Physica Scripta, 2022, 97, 015501.	1.2	15
44	Achieving dual-band absorption and electromagnetically induced transparency in VO2 metamaterials. Physica B: Condensed Matter, 2022, 624, 413391.	1.3	14
45	Large-Scale Uniform Silver Nanocave Array for Visible Light Refractive Index Sensing Using Soft UV Nanoimprint. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	13
46	Terahertz spoof plasmonic coaxial microcavity. Applied Optics, 2014, 53, 1118.	0.9	12
47	Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations. Chinese Physics B, 2014, 23, 047808.	0.7	11
48	Near-infrared transparent conducting metal based on impedance matching plasmonic nanostructures. Europhysics Letters, 2014, 107, 57007.	0.7	8
49	Optical cross-polarization converter with an octave bandwidth based on anisotropic plasmonic meta-surfaces. Europhysics Letters, 2015, 111, 27001.	0.7	8
50	High-performance polarization beam splitter based on anisotropic plasmonic nanostructures. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	8
51	Polarization-Independent Terahertz Tunable Analog of Electromagnetically Induced Transparency. IEEE Photonics Technology Letters, 2019, 31, 1297-1299.	1.3	8
52	A high-performance broadband terahertz absorber based on multilayer graphene squares. Physica Scripta, 2021, 96, 055504.	1.2	8
53	Wideband polarization-insensitive dielectric switch for mid-infrared waves realized by phase change material Ge ₃ Sb ₂ Te ₆ . Europhysics Letters, 2019, 126, 27004.	0.7	6
54	Controlling wideband absorption and electromagnetically induced transparency via a phase change material. Europhysics Letters, 2020, 129, 57003.	0.7	6

ZHENGYONG SONG

#	Article	IF	CITATIONS
55	Terahertz graphene modulator based on hybrid plasmonic waveguide. Physica Scripta, 2021, 96, 125525.	1.2	6
56	Experimental verification of free-space singular boundary conditions in an invisibility cloak. Journal of Optics (United Kingdom), 2016, 18, 044008.	1.0	5
57	Broadband terahertz reflector based on dielectric metamaterials. Europhysics Letters, 2017, 119, 47004.	0.7	5
58	Ethanol-controlled peroxidation in liquid-anode discharges. Journal Physics D: Applied Physics, 2019, 52, 425205.	1.3	5
59	VO ₂ -Based Switchable Metasurface With Broadband Photonic Spin Hall Effect and Absorption. IEEE Photonics Journal, 2021, 13, 1-5.	1.0	5
60	State Switching of Terahertz Reflection and Orbital Angular Momentum in Phase Change Metasurfaces. IEEE Photonics Journal, 2022, 14, 1-5.	1.0	5
61	Investigation of Optical Spectrum Properties of Hexagonal Boron Nitride from Metal to Dielectric Transition. Plasmonics, 2018, 13, 563-566.	1.8	4
62	Low-Loss Graphene Waveguide Modulator for Mid-Infrared Waves. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	4
63	Terahertz Multiple Beam Steering Using Graphene Pancharatnam-Berry Metasurfaces. IEEE Photonics Journal, 2022, 14, 1-6.	1.0	4
64	Switchable Wavefront of Mid-Infrared Wave Using GeSbTe Metasurfaces. IEEE Photonics Journal, 2022, 14, 1-5.	1.0	4
65	An efficient exact numerical solution for scattering by a circular cylinder. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11, S3.	0.8	3
66	Optimized invisibility cloaks from the Logarithm conformal mapping. Scientific Reports, 2016, 6, 38443.	1.6	1
67	Making transparent metals based on scattering cancellations. , 2012, , .		Ο
68	A new mechanism to design transparent electrodes: THz realizations. , 2012, , .		0
69	Modeling and Design of a Plasmonic Sensor for High Sensing Performance and Clear Registration. IEEE Photonics Journal, 2016, 8, 1-11.	1.0	Ο