Maria José Climent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107542/publications.pdf

Version: 2024-02-01

76 papers

6,588 citations

36 h-index 80 g-index

92 all docs 92 docs citations

times ranked

92

7034 citing authors

#	Article	lF	CITATIONS
1	Selective Conversion of HMF into 3â€Hydroxymethylcyclopentylamine through a Oneâ€Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. ChemSusChem, 2022, 15, .	6.8	5
2	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
3	Bimetallic CuFe nanoparticles as active and stable catalysts for chemoselective hydrogenation of biomass-derived platform molecules. Catalysis Science and Technology, 2021, 11, 3353-3363.	4.1	12
4	Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem, 2020, 13, 707-714.	6.8	23
5	Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. Journal of Catalysis, 2020, 389, 706-713.	6.2	20
6	Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation. Green Chemistry, 2020, 22, 2767-2777.	9.0	20
7	Chemoenzymatic Synthesis of 5â€Hydroxymethylfurfural (HMF)â€Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification. ChemSusChem, 2020, 13, 1864-1875.	6.8	32
8	Covalent Immobilization of Naringinase over Twoâ€Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem, 2020, 12, 4502-4511.	3.7	13
9	Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 6243-6250.	6.7	56
10	Mutual Valorization of 5-Hydroxymethylfurfural and Glycerol into Valuable Diol Monomers with Solid Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4239-4245.	6.7	42
11	Oneâ€Pot Synthesis of Biomassâ€Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts. ChemSusChem, 2018, 11, 2870-2880.	6.8	24
12	Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science and Technology, 2017, 7, 3008-3016.	4.1	36
13	Oneâ€Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 2017, 10, 119-128.	6.8	55
14	Use of Mesoporous Molecular Sieves in the Production of Fine Chemicals: Preparation of Dihydroquinolinones of Pharmaceutical Interest From 2′â€Aminochalcones. ChemCatChem, 2016, 8, 1335-1345.	3.7	2
15	Transformation of Cellulose into Nonionic Surfactants Using a Oneâ€Pot Catalytic Process. ChemSusChem, 2016, 9, 3492-3502.	6.8	18
16	Chemicals from Biomass: Synthesis of Biologically Active Furanochalcones by Claisen–Schmidt Condensation of Biomass-Derived 5-hydroxymethylfurfural (HMF) with Acetophenones. Topics in Catalysis, 2016, 59, 1257-1265.	2.8	19
17	Two-Dimensional ITQ-2 Zeolite for Biomass Transformation: Synthesis of Alkyl 5-Benzyl-2-furoates as Intermediates for Fine Chemicals. ACS Sustainable Chemistry and Engineering, 2016, 4, 6152-6159.	6.7	27
18	Heteropolycompounds as catalysts for biomass product transformations. Catalysis Reviews - Science and Engineering, 2016, 58, 497-586.	12.9	51

#	Article	IF	Citations
19	Nanocrystalline CeO ₂ as a Highly Active and Selective Catalyst for the Dehydration of Aldoximes to Nitriles and One-Pot Synthesis of Amides and Esters. ACS Catalysis, 2016, 6, 4564-4575.	11.2	32
20	Postsynthesisâ€Treated Ironâ€Based Metal–Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 2015, 8, 3270-3282.	6.8	19
21	Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 2015, 5, 5812-5821.	11.2	99
22	Process Intensification with Bifunctional Heterogeneous Catalysts: Selective One-Pot Synthesis of 2′-Aminochalcones. ACS Catalysis, 2015, 5, 157-166.	11.2	18
23	Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science, 2015, 8, 317-331.	30.8	81
24	Biomassâ€Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem, 2014, 7, 210-220.	6.8	62
25	Bifunctional acid–base ionic liquid for the one-pot synthesis of fine chemicals: Thioethers, 2H-chromenes and 2H-quinoline derivatives. Applied Catalysis A: General, 2014, 481, 27-38.	4.3	18
26	Solid Catalysts for Multistep Reactions: Oneâ∈Pot Synthesis of 2,3â∈Dihydroâ∈1,5â∈benzothiazepines with Solid Acid and Base Catalysts. ChemSusChem, 2014, 7, 1177-1185.	6.8	15
27	Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis, 2014, 4, 870-891.	11.2	304
28	Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 2014, 16, 516.	9.0	1,157
29	From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 123-131.	6.8	58
30	Preparation of Glycerol Carbonate Esters by using Hybrid Nafion–Silica Catalyst. ChemSusChem, 2013, 6, 1224-1234.	6.8	13
31	Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomassâ€Derived Products (Glycerol). ChemCatChem, 2013, 5, 3866-3874.	3.7	28
32	Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2, 16-58.	3.6	297
33	Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 2012, 292, 118-129.	6.2	70
34	A recyclable bifunctional acid–base organocatalyst with ionic liquid character. The role of site separation and spatial configuration on different condensation reactions. Physical Chemistry Chemical Physics, 2011, 13, 17255.	2.8	12
35	Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 2011, 13, 520.	9.0	528
36	Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 2011, 111, 1072-1133.	47.7	720

#	Article	IF	Citations
37	Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 2010, 269, 140-149.	6.2	337
38	Bifunctional Acid–Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 2010, 16, 1221-1231.	3.3	44
39	Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites. Recueil Des Travaux Chimiques Des Pays-Bas, 2010, 110, 275-278.	0.0	13
40	New one-pot multistep process with multifunctional catalysts: decreasing the E factor in the synthesis of fine chemicals. Green Chemistry, 2010, 12, 99-107.	9.0	54
41	Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 2009, 15, 8834-8841.	3.3	48
42	Mono―and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2009, 2, 500-506.	6.8	77
43	Photogeneration of 2-Deoxyribonolactone in Benzophenoneâ^'Purine Dyads. Formation of Ketylâ^'C1′ Biradicals. Organic Letters, 2008, 10, 4409-4412.	4.6	12
44	The Long-Lived Triplet Excited State of an Elongated Ketoprofen Derivative and Its Interactions with Amino Acids and Nucleosides. Journal of Physical Chemistry B, 2007, 111, 8277-8282.	2.6	26
45	Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 2007, 8, 402-407.	2.6	20
46	Heterogeneous Palladium Catalysts for a New Oneâ€Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis and Catalysis, 2007, 349, 1949-1954.	4.3	56
47	Gem-diamines as highly active organocatalysts for carbon–carbon bond formation. Journal of Catalysis, 2007, 246, 136-146.	6.2	59
48	MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 2007, 247, 223-230.	6.2	101
49	Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts. Green Chemistry, 2006, 8, 524.	9.0	26
50	Photochemistry of a naphthalene–thymine dyad in the presence of acetone. Tetrahedron, 2006, 62, 1372-1377.	1.9	2
51	Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 2006, 12, 553-561.	3.3	32
52	Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 2005, 233, 308-316.	6.2	33
53	Stereo-differentiation in the excited state behaviour of naphthalene-thymine dyads. Chemical Communications, 2005, , 2572.	4.1	6
54	Activated hydrotalcites as catalysts for the synthesis of chalcones ofÂpharmaceutical interest. Journal of Catalysis, 2004, 221, 474-482.	6.2	221

#	Article	IF	CITATIONS
55	Singlet Excited-State Interactions in Naphthalene-Thymine Dyads. ChemPhysChem, 2004, 5, 1704-1709.	2.1	6
56	Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 2004, 263, 155-161.	4.3	127
57	Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage: Paternoâ^'Býchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 2004, 17, 857-862.	3.3	40
58	Design of a solid catalyst for the synthesis of a molecule with blossom orange scent. Green Chemistry, 2002, 4, 565-569.	9.0	91
59	Synthesis of methylpseudoionones by activated hydrotalcites as solid base catalysts. Green Chemistry, 2002, 4, 474-480.	9.0	47
60	Synthesis of Pseudoionones by Acid and Base Solid Catalysts. Catalysis Letters, 2002, 79, 157-163.	2.6	65
61	Acid–Base Bifunctional Catalysts for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde. Journal of Catalysis, 2001, 197, 385-393.	6.2	88
62	Title is missing!. Catalysis Letters, 2001, 74, 161-167.	2.6	19
63	Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 2000, 192, 441-447.	6.2	106
64	Zeolites for the Production of Fine Chemicals: Synthesis of the Fructone Fragrancy. Journal of Catalysis, 2000, 196, 345-351.	6.2	61
65	Erattum to "Gas chromatographic-mass spectrometric study of photodegradation of carbamate pesticides―[J. Chromatogr. A, 738 (1996) 225–231]. Journal of Chromatography A, 1997, 761, 341.	3.7	2
66	Gas chromatographic-mass spectrometric study of photodegradation of carbamate pesticides. Journal of Chromatography A, 1996, 738, 225-231.	3.7	36
67	Acid zeolites as catalysts in organic reactions: condensation of acetophenone with benzene derivatives. Applied Catalysis A: General, 1995, 130, 5-12.	4.3	17
68	Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest. Journal of Catalysis, 1995, 151, 60-66.	6.2	344
69	MONO and Tridirectional 12-Membered Ring Zeolites as Acid Catalysts for Carbonyl Group Reactions. Studies in Surface Science and Catalysis, 1991, 59, 557-564.	1.5	5
70	Photolysis of 4-acetoxychromene adsorbed onto an Fe3+ - exchanged sepiolite. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 59, 379-383.	3.9	2
71	Zeolites as catalysts in organic reactions: Condensation of aldehydes with benzene derivatives. Journal of Catalysis, 1991, 130, 138-146.	6.2	37
72	Zeolites as catalysts in organic reactions. Claisen-Schmidt condensation of acetophenone with benzaldehyde. Catalysis Letters, 1990, 4, 85-91.	2.6	37

#	Article	IF	CITATIONS
73	Formation and hydrolysis of acetals catalysed by acid Faujasites. Applied Catalysis, 1990, 59, 333-340.	0.8	64
74	Zeolites in organic reactions. Applied Catalysis, 1989, 51, 113-125.	0.8	42
75	Design of synthetic zeolites as catalysts in organic reactions. Applied Catalysis, 1989, 49, 109-123.	0.8	164
76	Novel photoreactions of chromene derivatives. The photolysis of 4-acetoxy-2-chromene Tetrahedron, 1987, 43, 999-1002.	1.9	7