
Maria José Climent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 2014, 16, 516.	9.0	1,157
2	Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 2011, 111, 1072-1133.	47.7	720
3	Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 2011, 13, 520.	9.0	528
4	Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest. Journal of Catalysis, 1995, 151, 60-66.	6.2	344
5	Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 2010, 269, 140-149.	6.2	337
6	Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis, 2014, 4, 870-891.	11.2	304
7	Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2, 16-58.	3.6	297
8	Activated hydrotalcites as catalysts for the synthesis of chalcones ofÂpharmaceutical interest. Journal of Catalysis, 2004, 221, 474-482.	6.2	221
9	Design of synthetic zeolites as catalysts in organic reactions. Applied Catalysis, 1989, 49, 109-123.	0.8	164
10	Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 2004, 263, 155-161.	4.3	127
11	Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 2000, 192, 441-447.	6.2	106
12	MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 2007, 247, 223-230.	6.2	101
13	Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 2015, 5, 5812-5821.	11.2	99
14	Design of a solid catalyst for the synthesis of a molecule with blossom orange scent. Green Chemistry, 2002, 4, 565-569.	9.0	91
15	Acid–Base Bifunctional Catalysts for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde. Journal of Catalysis, 2001, 197, 385-393.	6.2	88
16	Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science, 2015, 8, 317-331.	30.8	81
17	Mono―and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2009, 2, 500-506.	6.8	77
18	Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 2012, 292, 118-129.	6.2	70

Maria José Climent

#	Article	IF	CITATIONS
19	Synthesis of Pseudoionones by Acid and Base Solid Catalysts. Catalysis Letters, 2002, 79, 157-163.	2.6	65
20	Formation and hydrolysis of acetals catalysed by acid Faujasites. Applied Catalysis, 1990, 59, 333-340.	0.8	64
21	Biomassâ€Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem, 2014, 7, 210-220.	6.8	62
22	Zeolites for the Production of Fine Chemicals: Synthesis of the Fructone Fragrancy. Journal of Catalysis, 2000, 196, 345-351.	6.2	61
23	Gem-diamines as highly active organocatalysts for carbon–carbon bond formation. Journal of Catalysis, 2007, 246, 136-146.	6.2	59
24	From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 123-131.	6.8	58
25	Heterogeneous Palladium Catalysts for a New Oneâ€Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis and Catalysis, 2007, 349, 1949-1954.	4.3	56
26	Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 6243-6250.	6.7	56
27	Oneâ€Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 2017, 10, 119-128.	6.8	55
28	New one-pot multistep process with multifunctional catalysts: decreasing the E factor in the synthesis of fine chemicals. Green Chemistry, 2010, 12, 99-107.	9.0	54
29	Heteropolycompounds as catalysts for biomass product transformations. Catalysis Reviews - Science and Engineering, 2016, 58, 497-586.	12.9	51
30	Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 2009, 15, 8834-8841.	3.3	48
31	Synthesis of methylpseudoionones by activated hydrotalcites as solid base catalysts. Green Chemistry, 2002, 4, 474-480.	9.0	47
32	Bifunctional Acid–Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 2010, 16, 1221-1231.	3.3	44
33	Zeolites in organic reactions. Applied Catalysis, 1989, 51, 113-125.	0.8	42
34	Mutual Valorization of 5-Hydroxymethylfurfural and Glycerol into Valuable Diol Monomers with Solid Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4239-4245.	6.7	42
35	Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage: Paternoâ^'Büchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 2004, 17, 857-862.	3.3	40
36	Zeolites as catalysts in organic reactions. Claisen-Schmidt condensation of acetophenone with benzaldehyde. Catalysis Letters, 1990, 4, 85-91.	2.6	37

Maria José Climent

#	Article	IF	CITATIONS
37	Zeolites as catalysts in organic reactions: Condensation of aldehydes with benzene derivatives. Journal of Catalysis, 1991, 130, 138-146.	6.2	37
38	Gas chromatographic-mass spectrometric study of photodegradation of carbamate pesticides. Journal of Chromatography A, 1996, 738, 225-231.	3.7	36
39	Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science and Technology, 2017, 7, 3008-3016.	4.1	36
40	Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 2005, 233, 308-316.	6.2	33
41	Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 2006, 12, 553-561.	3.3	32
42	Nanocrystalline CeO ₂ as a Highly Active and Selective Catalyst for the Dehydration of Aldoximes to Nitriles and One-Pot Synthesis of Amides and Esters. ACS Catalysis, 2016, 6, 4564-4575.	11.2	32
43	Chemoenzymatic Synthesis of 5â€Hydroxymethylfurfural (HMF)â€Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification. ChemSusChem, 2020, 13, 1864-1875.	6.8	32
44	Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomassâ€Đerived Products (Glycerol). ChemCatChem, 2013, 5, 3866-3874.	3.7	28
45	Two-Dimensional ITQ-2 Zeolite for Biomass Transformation: Synthesis of Alkyl 5-Benzyl-2-furoates as Intermediates for Fine Chemicals. ACS Sustainable Chemistry and Engineering, 2016, 4, 6152-6159.	6.7	27
46	Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts. Green Chemistry, 2006, 8, 524.	9.0	26
47	The Long-Lived Triplet Excited State of an Elongated Ketoprofen Derivative and Its Interactions with Amino Acids and Nucleosides. Journal of Physical Chemistry B, 2007, 111, 8277-8282.	2.6	26
48	Oneâ€Pot Synthesis of Biomassâ€Đerived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts. ChemSusChem, 2018, 11, 2870-2880.	6.8	24
49	Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem, 2020, 13, 707-714.	6.8	23
50	Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 2007, 8, 402-407.	2.6	20
51	Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. Journal of Catalysis, 2020, 389, 706-713.	6.2	20
52	Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation. Green Chemistry, 2020, 22, 2767-2777.	9.0	20
53	Title is missing!. Catalysis Letters, 2001, 74, 161-167.	2.6	19
54	Postsynthesisâ€Treated Ironâ€Based Metal–Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 2015, 8, 3270-3282.	6.8	19

#	Article	IF	CITATIONS
55	Chemicals from Biomass: Synthesis of Biologically Active Furanochalcones by Claisen–Schmidt Condensation of Biomass-Derived 5-hydroxymethylfurfural (HMF) with Acetophenones. Topics in Catalysis, 2016, 59, 1257-1265.	2.8	19
56	Bifunctional acid–base ionic liquid for the one-pot synthesis of fine chemicals: Thioethers, 2H-chromenes and 2H-quinoline derivatives. Applied Catalysis A: General, 2014, 481, 27-38.	4.3	18
57	Process Intensification with Bifunctional Heterogeneous Catalysts: Selective One-Pot Synthesis of 2′-Aminochalcones. ACS Catalysis, 2015, 5, 157-166.	11.2	18
58	Transformation of Cellulose into Nonionic Surfactants Using a Oneâ€Pot Catalytic Process. ChemSusChem, 2016, 9, 3492-3502.	6.8	18
59	Acid zeolites as catalysts in organic reactions: condensation of acetophenone with benzene derivatives. Applied Catalysis A: General, 1995, 130, 5-12.	4.3	17
60	Solid Catalysts for Multistep Reactions: Oneâ€Pot Synthesis of 2,3â€Dihydroâ€1,5â€benzothiazepines with Solid Acid and Base Catalysts. ChemSusChem, 2014, 7, 1177-1185.	6.8	15
61	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
62	Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites. Recueil Des Travaux Chimiques Des Pays-Bas, 2010, 110, 275-278.	0.0	13
63	Preparation of Glycerol Carbonate Esters by using Hybrid Nafion–Silica Catalyst. ChemSusChem, 2013, 6, 1224-1234.	6.8	13
64	Covalent Immobilization of Naringinase over Twoâ€Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem, 2020, 12, 4502-4511.	3.7	13
65	Photogeneration of 2-Deoxyribonolactone in Benzophenoneâ^Purine Dyads. Formation of Ketylâ^C1′ Biradicals. Organic Letters, 2008, 10, 4409-4412.	4.6	12
66	A recyclable bifunctional acid–base organocatalyst with ionic liquid character. The role of site separation and spatial configuration on different condensation reactions. Physical Chemistry Chemical Physics, 2011, 13, 17255.	2.8	12
67	Bimetallic CuFe nanoparticles as active and stable catalysts for chemoselective hydrogenation of biomass-derived platform molecules. Catalysis Science and Technology, 2021, 11, 3353-3363.	4.1	12
68	Novel photoreactions of chromene derivatives. The photolysis of 4-acetoxy-2-chromene Tetrahedron, 1987, 43, 999-1002.	1.9	7
69	Singlet Excited-State Interactions in Naphthalene-Thymine Dyads. ChemPhysChem, 2004, 5, 1704-1709.	2.1	6
70	Stereo-differentiation in the excited state behaviour of naphthalene-thymine dyads. Chemical Communications, 2005, , 2572.	4.1	6
71	MONO and Tridirectional 12-Membered Ring Zeolites as Acid Catalysts for Carbonyl Group Reactions. Studies in Surface Science and Catalysis, 1991, 59, 557-564.	1.5	5
72	Selective Conversion of HMF into 3â€Hydroxymethylcyclopentylamine through a Oneâ€Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. ChemSusChem, 2022, 15, .	6.8	5

#	Article	IF	CITATIONS
73	Photolysis of 4-acetoxychromene adsorbed onto an Fe3+ - exchanged sepiolite. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 59, 379-383.	3.9	2
74	Erattum to "Gas chromatographic-mass spectrometric study of photodegradation of carbamate pesticides―[J. Chromatogr. A, 738 (1996) 225–231]. Journal of Chromatography A, 1997, 761, 341.	3.7	2
75	Photochemistry of a naphthalene–thymine dyad in the presence of acetone. Tetrahedron, 2006, 62, 1372-1377.	1.9	2
76	Use of Mesoporous Molecular Sieves in the Production of Fine Chemicals: Preparation of Dihydroquinolinones of Pharmaceutical Interest From 2â€2â€Aminochalcones. ChemCatChem, 2016, 8, 1335-1345.	3.7	2