Xiaowei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107472/publications.pdf

Version: 2024-02-01

		1684188	1588992	
9	176	5	8	
papers	citations	h-index	g-index	
9	9	9	248	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Facile synthesis of 3D sulfur/nitrogen co-doped graphene derived from graphene oxide hydrogel and the simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical, 2019, 279, 170-176.	7.8	85
2	Ultrasensitive Chemodynamic Therapy: Bimetallic Peroxide Triggers High pHâ€Activated, Synergistic Effect/H ₂ O ₂ Selfâ€Supplyâ€Mediated Cascade Fenton Chemistry. Advanced Healthcare Materials, 2021, 10, e2002126.	7.6	34
3	Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Research, 2021, 14, 699-706.	10.4	33
4	<i>In Situ</i> 3D-to-2D Transformation of Manganese-Based Layered Silicates for Tumor-Specific T ₁ -Weighted Magnetic Resonance Imaging with High Signal-to-Noise and Excretability. ACS Applied Materials & Signal Signa	8.0	11
5	Revisiting stacking interactions in tetrathiafulvalene and selected derivatives using tight-binding quantum chemical calculations and local coupled-cluster method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 311-320.	1.1	6
6	Modulation of release mechanisms of methylene blue (MB) monomers and dimers from silica-MB@shellac synthesized by antisolvent crystallization. Materials Science and Engineering C, 2020, 107, 110309.	7.3	3
7	Crystal structures, thermal stabilities, and dissolution behaviours of tinidazole and the tinidazoleâ€"vanillic acid cocrystal: insights from energy frameworks. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 389-397.	0.5	3
8	Synthesis of plateâ€ike α â€alumina crystals by solid state reaction of fir immersed with slurry mixture of gibbsite and nonâ€fluorine morphological modifiers. Micro and Nano Letters, 2019, 14, 1003-1006.	1.3	1
9	Increased photoluminescence and photodynamic therapy efficiency of hydroxyapatite- \hat{l}^2 -cyclodextrin-methylene blue@carbon powders with the favor of hydrogen bonding effect. Photochemical and Photobiological Sciences, 2021, 20, 1323-1331.	2.9	0