Lone Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atlas-based auto-segmentation for delineating the heart and cardiac substructures in breast cancer radiation therapy. Acta Oncológica, 2022, 61, 247-254.	0.8	10
2	Survival benefits for non-small cell lung cancer patients treated with adaptive radiotherapy. Radiotherapy and Oncology, 2022, 168, 234-240.	0.3	10
3	Thorough design and pre-trial quality assurance (QA) decrease dosimetric impact of delineation and dose planning variability in the STRICTLUNG and STARLUNG trials for stereotactic body radiotherapy (SBRT) of central and ultra-central lung tumours. Radiotherapy and Oncology, 2022, 171, 53-61.	0.3	8
4	Treatment planning comparison in the PROTECT-trial randomising proton versus photon beam therapy in oesophageal cancer: Results from eight European centres. Radiotherapy and Oncology, 2022, 172, 32-41.	0.3	2
5	OC-0751 Collecting Complete Radiotherapy Plan Data of 11,000+ Patients in a National Database. Radiotherapy and Oncology, 2022, 170, S663-S664.	0.3	0
6	MO-0470 Markerless lung tumor localization in cine MV images of deep-inspiration breath-hold IMRT treatments. Radiotherapy and Oncology, 2022, 170, S417-S419.	0.3	0
7	OC-0450 Model-based selection of NSCLC patients for proton therapy with heterogeneous dose distributions. Radiotherapy and Oncology, 2022, 170, S394-S395.	0.3	0
8	PO-1262 Early response to chemotherapy as predictor of locoregional and distant failure in NSCLC. Radiotherapy and Oncology, 2022, 170, S1065-S1066.	0.3	0
9	PD-0653 Reproducibility of deep inspiration breath hold during RT for lung cancer patients Radiotherapy and Oncology, 2022, 170, S588.	0.3	0
10	MO-0550 Pre-study QA reduces delineation errors and minimize dose to OAR in a central lung tumour SBRT trial. Radiotherapy and Oncology, 2022, 170, S475-S477.	0.3	0
11	PD-0399 Daily delivered dose in NSCLC patients receiving dose escalation. Radiotherapy and Oncology, 2022, 170, S338-S340.	0.3	0
12	OC-0439 Geometric and dosimetric stability of high FDG-uptake volumes during dose escalated RT of NSCLC. Radiotherapy and Oncology, 2022, 170, S382-S384.	0.3	0
13	Bone versus soft-tissue setup in proton therapy for patients with oesophageal cancer. Acta Oncológica, 2022, 61, 994-1003.	0.8	1
14	Proposal for the delineation of neoadjuvant target volumes in oesophageal cancer. Radiotherapy and Oncology, 2021, 156, 102-112.	0.3	19
15	Optimal beam angle selection and knowledge-based planning significantly reduces radiotherapy dose to organs at risk for lung cancer patients. Acta Oncológica, 2021, 60, 293-299.	0.8	8
16	A comparison of two methods for segmentation of functional volumes in radiotherapy planning of lung cancer patients. Acta Oncológica, 2021, 60, 353-360.	0.8	1
17	Prospectively scored pulmonary toxicities in non-small cell lung cancer: Results from a randomized phase II dose escalation trial. Clinical and Translational Radiation Oncology, 2021, 27, 8-14.	0.9	0
18	Local control after stereotactic body radiotherapy of centrally located lung tumours. Acta Oncológica, 2021, 60, 1069-1073.	0.8	3

#	Article	IF	CITATIONS
19	Density calibrated cone beam CT as a tool for adaptive radiotherapy. Acta Oncológica, 2021, 60, 1275-1282.	0.8	3
20	OC-0631 Proton and photon treatment planning comparison for oesophageal cancer between six European centres. Radiotherapy and Oncology, 2021, 161, S494-S495.	0.3	0
21	PD-0895 Dose to heart substructures in esophageal cancer patients: Comparison between photon and protons. Radiotherapy and Oncology, 2021, 161, S734-S735.	0.3	0
22	PO-1569 Density calibrated cone-beam CT as a tool for adaptive radiotherapy. Radiotherapy and Oncology, 2021, 161, S1292-S1294.	0.3	0
23	Personal innovative approach in radiation therapy of lung cancer- functional lung avoidance SPECT-guided (ASPECT) radiation therapy: a study protocol for phase II randomised double-blind clinical trial. BMC Cancer, 2021, 21, 940.	1.1	5
24	PD-0876 First-failure prediction model for locally advanced non-small cell lung cancer - External validation. Radiotherapy and Oncology, 2021, 161, S712-S713.	0.3	0
25	Strategies for Motion Robust Proton Therapy With Pencil Beam Scanning for Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2021, 111, 539-548.	0.4	13
26	FRoG: An independent dose and LET _d prediction tool for proton therapy at ProBeam® facilities. Medical Physics, 2020, 47, 5274-5286.	1.6	14
27	Radionecrosis and cellular changes in small volume stereotactic brain radiosurgery in a porcine model. Scientific Reports, 2020, 10, 16223.	1.6	8
28	PV-0313 Ventilation functional lung volumes obtained from SPECT and 4D-CT do not identify the same voxels Radiotherapy and Oncology, 2019, 133, S161-S162.	0.3	0
29	PO-0944 Proton therapy for esophageal cancer; variable relative biological effect and heart dose. Radiotherapy and Oncology, 2019, 133, S509-S510.	0.3	0
30	PO-0807 Heterogeneous FDG-guided dose escalation in definitive oesophageal radiotherapy: a feasibility study. Radiotherapy and Oncology, 2019, 133, S419-S420.	0.3	0
31	PO-0899 Validation of dose calculation accuracy on daily cone-beam CT scans in the thoracic region. Radiotherapy and Oncology, 2019, 133, S476-S477.	0.3	0
32	PO-0920 Knowledge-based planning significantly reduces dose to organs at risk for lung cancer. Radiotherapy and Oncology, 2019, 133, S492.	0.3	0
33	PO-0974 Intra-fractional stability of Deep Inspiration Breath Hold during RT for lung and lymphoma cancer. Radiotherapy and Oncology, 2019, 133, S531-S532.	0.3	1
34	EP-1352 Locally advanced NSCLC: performance status based eligibility for adjuvant check point inhibitor. Radiotherapy and Oncology, 2019, 133, S739-S740.	0.3	0
35	SP-0354 Image-guided adaptive radiotherapy in the treatment of lung cancer patients. Radiotherapy and Oncology, 2019, 133, S177.	0.3	0
36	Setup strategies and uncertainties in esophageal radiotherapy based on detailed intra- and interfractional tumor motion mapping. Radiotherapy and Oncology, 2019, 136, 161-168.	0.3	18

#	Article	IF	CITATIONS
37	Validation of a robust strategy for proton spot scanning for oesophageal cancer in the presence of anatomical changes. Radiotherapy and Oncology, 2019, 131, 174-178.	0.3	16
38	Local failure after radical radiotherapy of non-small cell lung cancer in relation to the planning FDG-PET/CT. Acta Oncológica, 2018, 57, 813-819.	0.8	7
39	Systematic intrafraction shifts of mediastinal lymph node targets between setup imaging and radiation treatment delivery in lung cancer patients. Radiotherapy and Oncology, 2018, 126, 318-324.	0.3	6
40	The NARLAL2 dose escalation trial: dosimetric implications of inter-fractional changes in organs at risk. Acta Oncológica, 2018, 57, 473-479.	0.8	4
41	Cone beam CT based dose calculation in the thorax region. Physics and Imaging in Radiation Oncology, 2018, 7, 45-50.	1.2	13
42	Energy layer optimization strategies for intensityâ€modulated proton therapy of lung cancer patients. Medical Physics, 2018, 45, 4355-4363.	1.6	7
43	OC-0181: Two common methods of defining functional lung, using SPECT and 4D-CT, do not obtain the same voxels. Radiotherapy and Oncology, 2018, 127, S96.	0.3	0
44	PV-0203: Energy layer reduction strategies for single-and multi field optimization of proton lung plans. Radiotherapy and Oncology, 2018, 127, S110-S111.	0.3	0
45	SP-0214: Clinical implementation of adaptive radiotherapy. Radiotherapy and Oncology, 2018, 127, S116.	0.3	0
46	OC-0410: Cone-beam CT based dose calculation in the thorax region. Radiotherapy and Oncology, 2018, 127, S210-S211.	0.3	0
47	PO-0754: Safe inhomogeneus RT dose escalation in locally advanced NSCLC, -interim results from NARLAL2. Radiotherapy and Oncology, 2018, 127, S388-S389.	0.3	0
48	PO-0934: Detailed mapping of time-resolved 3D intra- and inter-fractional oesophageal tumour motion. Radiotherapy and Oncology, 2018, 127, S506-S507.	0.3	0
49	PO-0943: QA of lung cancer patients treated in deep-inspiration breath-hold using intra-treatment imaging. Radiotherapy and Oncology, 2018, 127, S513-S514.	0.3	0
50	PO-0958: Anatomical changes in oesophageal cancer patients: Posterior beam IMPT is more robust than IMRT. Radiotherapy and Oncology, 2018, 127, S525-S526.	0.3	1
51	EP-1812: Proton pencil beam scanning with motion emulated as spot shifts: dose reconstruction for lung cancer. Radiotherapy and Oncology, 2018, 127, S974-S975.	0.3	0
52	EP-1832: Validation of Acuros XB dose calculation algorithm with Monte Carlo for clinical treatment plans. Radiotherapy and Oncology, 2018, 127, S988-S989.	0.3	0
53	EP-2060: Daily dose calculation using CBCT images can trigger treatment adaptation for lung cancer patients. Radiotherapy and Oncology, 2018, 127, S1129-S1130.	0.3	0
54	Validation of the Acuros <scp>XB</scp> dose calculation algorithm versus Monte Carlo for clinical treatment plans. Medical Physics, 2018, 45, 3909-3915.	1.6	42

#	Article	IF	CITATIONS
55	A randomized phase II trial of concurrent chemoradiation with two doses of radiotherapy, 60 Gy and 66 Gy, concomitant with a fixed dose of oral vinorelbine in locally advanced NSCLC. Radiotherapy and Oncology, 2017, 123, 276-281.	0.3	20
56	P2.02-049 Gender and Risk of Cessation of Oral Vinorelbine in a Randomized Trial of Concurrent Chemoradiation of Locally Advanced NSCLC. Journal of Thoracic Oncology, 2017, 12, S877-S878.	0.5	0
57	Reliability of dose volume constraint inference from clinical data. Physics in Medicine and Biology, 2017, 62, 3250-3262.	1.6	2
58	Adaptation is mandatory for intensity modulated proton therapy of advanced lung cancer to ensure target coverage. Radiotherapy and Oncology, 2017, 122, 400-405.	0.3	54
59	Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer. Acta Oncológica, 2017, 56, 1604-1609.	0.8	9
60	PO-0877: Proton therapy of oesophageal cancer is more robust against anatomical changes than photons. Radiotherapy and Oncology, 2017, 123, S479.	0.3	0
61	OC-0068: Heterogeneous dose escalation in lung: How robust are high FDG-uptake volumes during radiotherapy?. Radiotherapy and Oncology, 2017, 123, S34.	0.3	0
62	OC-0487: Pre-treatment characteristics can predict anatomical changes occurring during RT in lung cancer. Radiotherapy and Oncology, 2017, 123, S258-S259.	0.3	0
63	PO-0856: Systematic baseline shifts of lymph node targets between setup and treatment of lung cancer patients. Radiotherapy and Oncology, 2017, 123, S465-S466.	0.3	0
64	EP-1661: Adaptive strategy to accommodate anatomical changes during RT in oesophageal cancer patients. Radiotherapy and Oncology, 2017, 123, S902-S903.	0.3	0
65	PO-0876: Treatment adaptation is mandatory for intensity modulated proton therapy of advanced lung cancer. Radiotherapy and Oncology, 2017, 123, S478-S479.	0.3	0
66	EP-1229: Phase II trial of concurrent erlotinib in locally advanced non-small cell lung cancer (LA-NSCLC). Radiotherapy and Oncology, 2017, 123, S663.	0.3	1
67	EP-1614: Uncertainty of dose-volume constraints obtained from radiation pneumonitis dose-response analysis. Radiotherapy and Oncology, 2017, 123, S872-S873.	0.3	0
68	Heterogeneous FDG-guided dose-escalation for locally advanced NSCLC (the NARLAL2 trial): Design and early dosimetric results of a randomized, multi-centre phase-III study. Radiotherapy and Oncology, 2017, 124, 311-317.	0.3	24
69	OC-0215: Mapping of breathing and cardiac induced motion of lymph node targets in lung cancer patients. Radiotherapy and Oncology, 2016, 119, S98-S99.	0.3	0
70	EP-1223: Local failure after radical radiotherapy of NSCLC in relation to the pre-therapeutic PET/CT. Radiotherapy and Oncology, 2016, 119, S579-S580.	0.3	0
71	OC-0364: Adaptive radiotherapy for advanced lung cancer ensures target coverage and decreases lung dose. Radiotherapy and Oncology, 2016, 119, S169.	0.3	1
72	Cardiac and respiration induced motion of mediastinal lymph node targets in lung cancer patients throughout the radiotherapy treatment course. Radiotherapy and Oncology, 2016, 121, 52-58.	0.3	23

#	Article	IF	CITATIONS
73	EP-1932: Quality assurance in implementing a national dose escalation trial in NSCLC – report from NARLAL2. Radiotherapy and Oncology, 2016, 119, S916-S917.	0.3	0
74	OC-0363: Dose escalation in lung cancer patients, the dosimetric implications of inter-fractional change. Radiotherapy and Oncology, 2016, 119, S168-S169.	0.3	1
75	OC-0544: Heterogeneous FDG-guided dose escalation of locally advanced NSCLC, the NARLAL2 phase III trial. Radiotherapy and Oncology, 2016, 119, S259.	0.3	Ο
76	Adaptive radiotherapy for advanced lung cancer ensures target coverage and decreases lung dose. Radiotherapy and Oncology, 2016, 121, 32-38.	0.3	79
77	OC-0242: A randomized phase II trial of concurrent chemo-RT of oral vinorelbine and 60 Gy or 66 Gy, in locally advanced NSCLC. Radiotherapy and Oncology, 2015, 115, S122-S123.	0.3	0
78	How Precise Can Dose-Response Parameters Derived From Clinical Data Be?. International Journal of Radiation Oncology Biology Physics, 2015, 93, S53.	0.4	0
79	Anatomical landmarks accurately determine interfractional lymph node shifts during radiotherapy of lung cancer patients. Radiotherapy and Oncology, 2015, 116, 64-69.	0.3	21
80	Is integrated transit planar portal dosimetry able to detect geometric changes in lung cancer patients treated with volumetric modulated arc therapy?. Acta Oncológica, 2015, 54, 1501-1507.	0.8	16
81	Dosimetric evaluation of anatomical changes during treatment to identify criteria for adaptive radiotherapy in oesophageal cancer patients. Acta Oncológica, 2015, 54, 1467-1473.	0.8	27
82	Evaluation of factors associated with loco-regional failure and survival in limited disease small cell lung cancer patients treated with chemoradiotherapy. Acta Oncológica, 2015, 54, 1574-1581.	0.8	9
83	Clinical outcome of image-guided adaptive radiotherapy in the treatment of lung cancer patients. Acta Oncológica, 2015, 54, 1430-1437.	0.8	39
84	New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy. Acta Oncológica, 2015, 54, 1343-1349.	0.8	61
85	A learning programme qualifying radiation therapists to manage daily online adaptive radiotherapy. Acta Oncológica, 2015, 54, 1697-1701.	0.8	20
86	Adaptive Radiation Therapy for Advanced Lung Cancer Decreases Both Locoregional Failure and Symptomatic Radiation Pneumonitis. International Journal of Radiation Oncology Biology Physics, 2015, 93, E418.	0.4	1
87	Clinical use of iterative 4D-cone beam computed tomography reconstructions to investigate respiratory tumor motion in lung cancer patients. Acta Oncológica, 2014, 53, 1107-1113.	0.8	14
88	Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis. Radiotherapy and Oncology, 2014, 110, 517-522.	0.3	78
89	OC-0575: Large scale implementation of adaptive radiotherapy for lung cancer patients. Radiotherapy and Oncology, 2014, 111, S225.	0.3	1
90	A randomized phase II trial of concurrent chemoradiation of oral vinorelbine and two doses of radiotherapy, 60 and 66 Gy, in local-regionally advanced non-small cell lung cancer (LA-NSCLC) Journal of Clinical Oncology, 2014, 32, 7557-7557.	0.8	0

#	Article	IF	CITATIONS
91	Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators. Radiation Measurements, 2013, 56, 290-293.	0.7	12
92	Dosimetric impact of respiratory motion, interfraction baseline shifts, and anatomical changes in radiotherapy of non-small cell lung cancer. Acta OncolÃ ³ gica, 2013, 52, 1490-1496.	0.8	49
93	Inter-tester reproducibility of tumour change in small cell lung cancer patients undergoing chemoradiotherapy. Acta Oncológica, 2013, 52, 1520-1525.	0.8	4
94	PO-0844: Consequences of using 4D-CT maximum intensity projection or midventilation phase for delineation in lung cancer. Radiotherapy and Oncology, 2013, 106, S324-S325.	0.3	0
95	OC-0444: From bone match to soft tissue match using daily CBCT for lung cancer patients. How do we implement this change?. Radiotherapy and Oncology, 2013, 106, S171-S172.	0.3	0
96	A method of dose reconstruction for moving targets compatible with dynamic treatments. Medical Physics, 2012, 39, 6237-6246.	1.6	86
97	A Method of Dose Reconstruction for Moving Targets With Dynamic Treatments. International Journal of Radiation Oncology Biology Physics, 2012, 84, S789.	0.4	0
98	Clinical validation of the Acuros XB photon dose calculation algorithm, a grid-based Boltzmann equation solver. Acta Oncológica, 2012, 51, 376-385.	0.8	43
99	A planning study of radiotherapy dose escalation of PET-active tumour volumes in non-small cell lung cancer patients. Acta Oncológica, 2011, 50, 883-888.	0.8	28
100	213 speaker EPID-BASED QUALITY ASSURANCE FOR VOLUMETRIC MODULATED ARC THERAPY. Radiotherapy and Oncology, 2011, 99, S82-S83.	0.3	0
101	377 oral BENCHMARK OF A NEW ALGORITHM FOR DOSE CALCULATION IN RT USING A GRID-BASED BOLTZMANN EQUATION SOLVER. Radiotherapy and Oncology, 2011, 99, S149.	0.3	0
102	Tolerance levels of EPIDâ€based quality control for volumetric modulated arc therapy. Medical Physics, 2011, 38, 1425-1434.	1.6	23
103	Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients. Acta Oncológica, 2010, 49, 1077-1084.	0.8	61
104	Validation of Varian's AAA algorithm with focus on lung treatments. Acta Oncológica, 2009, 48, 209-215.	0.8	26
105	Implementation and experimental validation of the high dose rate stereotactic treatment mode at Varian accelerators Acta OncolÂ ³ gica, 2009, 48, 201-208.	0.8	6
106	Raman Investigation of the Localized Vibrational Mode of Carbon in Strain-Relaxed Si1-xGex:C. Japanese Journal of Applied Physics, 2001, 40, 5905-5906.	0.8	1
107	Combined infrared absorption and modeling study of a dicarbon-dihydrogen defect in silicon. Physical Review B, 2000, 62, 12859-12867.	1.1	14
108	Weakly bound carbon-hydrogen complex in silicon. Physical Review B, 2000, 61, 16659-16666.	1.1	14

#	Article	IF	CITATIONS
109	Local vibrational modes of the metastable dicarbon center(Cs–Ci)in silicon. Physical Review B, 1999, 60, 8081-8086.	1.1	42
110	Substitutional carbon inSilâ^'xGex. Physical Review B, 1999, 60, 13573-13581.	1.1	14
111	Local vibrational modes of a dicarbon–hydrogen center in crystalline silicon. Physica B: Condensed Matter, 1999, 273-274, 275-278.	1.3	2
112	C–H complex in Si observed at low temperatures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 58, 167-170.	1.7	6
113	Substitutional carbon in germanium. Physical Review B, 1997, 55, 11167-11173.	1.1	36
114	Substitutional Carbon in Ge and Si _{1-x} Ge _{x.} . Materials Science Forum, 1997, 258-263, 97-102.	0.3	4
115	SiH stretch modes of hydrogen — vacancy defects in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 36, 259-263.	1.7	89
116	H Interacting with Intrinsic Defects in Si. Materials Science Forum, 1995, 196-201, 933-938.	0.3	67