
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107372/publications.pdf Version: 2024-02-01

HIDOSHI AKAZANAA

#	Article	IF	CITATIONS
1	p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature, 2007, 446, 444-448.	27.8	809
2	Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature Cell Biology, 2004, 6, 499-506.	10.3	615
3	Adult Cardiac Sca-1-positive Cells Differentiate into Beating Cardiomyocytes. Journal of Biological Chemistry, 2004, 279, 11384-11391.	3.4	585
4	G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature Medicine, 2005, 11, 305-311.	30.7	541
5	Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19812-19817.	7.1	458
6	Angiogenesis and Cardiac Hypertrophy. Circulation Research, 2014, 114, 565-571.	4.5	365
7	Roles of Cardiac Transcription Factors in Cardiac Hypertrophy. Circulation Research, 2003, 92, 1079-1088.	4.5	335
8	Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. Journal of Cell Biology, 2007, 176, 329-341.	5.2	308
9	Complement C1q Activates Canonical Wnt Signaling and Promotes Aging-Related Phenotypes. Cell, 2012, 149, 1298-1313.	28.9	278
10	Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nature Genetics, 2020, 52, 1169-1177.	21.4	206
11	Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nature Communications, 2018, 9, 4435.	12.8	201
12	Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Journal of Clinical Investigation, 2010, 120, 1506-1514.	8.2	192
13	Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB Journal, 2004, 18, 851-853.	0.5	191
14	Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. , 2005, 107, 252-268.		190
15	Oxidative Stress-Induced Signal Transduction Pathways in Cardiac Myocytes: Involvement of ROS in Heart Diseases. Antioxidants and Redox Signaling, 2003, 5, 789-794.	5.4	186
16	Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE, 2017, 12, e0174099.	2.5	182
17	Integrins Play a Critical Role in Mechanical Stress–Induced p38 MAPK Activation. Hypertension, 2002, 39, 233-238.	2.7	179
18	Critical Roles of Muscle-Secreted Angiogenic Factors in Therapeutic Neovascularization. Circulation Research, 2006, 98, 1194-1202.	4.5	170

#	Article	IF	CITATIONS
19	Conformational switch of angiotensin II type 1 receptor underlying mechanical stressâ€induced activation. EMBO Reports, 2008, 9, 179-186.	4.5	167
20	Cardiac mast cells cause atrial fibrillation through PDGF-A–mediated fibrosis in pressure-overloaded mouse hearts. Journal of Clinical Investigation, 2010, 120, 242-253.	8.2	163
21	Smads, Tak1, and Their Common Target Atf-2 Play a Critical Role in Cardiomyocyte Differentiation. Journal of Cell Biology, 2001, 153, 687-698.	5.2	137
22	Cardiac Nonmyocytes in the Hub of Cardiac Hypertrophy. Circulation Research, 2015, 117, 89-98.	4.5	127
23	Promotion of CHIP-Mediated p53 Degradation Protects the Heart From Ischemic Injury. Circulation Research, 2010, 106, 1692-1702.	4.5	126
24	Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 2004, 167, 351-363.	5.2	122
25	Reactive Oxygen Species in Mechanical Stress-Induced Cardiac Hypertrophy. Biochemical and Biophysical Research Communications, 2001, 289, 901-907.	2.1	118
26	Context-dependent Transcriptional Cooperation Mediated by Cardiac Transcription Factors Csx/Nkx-2.5 and GATA-4. Journal of Biological Chemistry, 1999, 274, 8231-8239.	3.4	111
27	Phosphatidylinositol 3-Kinase–Akt Pathway Plays a Critical Role in Early Cardiomyogenesis by Regulating Canonical Wnt Signaling. Circulation Research, 2005, 97, 144-151.	4.5	108
28	Leukemia Inhibitory Factor Enhances Survival of Cardiomyocytes and Induces Regeneration of Myocardium After Myocardial Infarction. Circulation, 2003, 108, 748-753.	1.6	104
29	Targeted disruption of the homeobox transcription factorBapx1results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes To Cells, 2000, 5, 499-513.	1.2	101
30	Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nature Immunology, 2018, 19, 1391-1402.	14.5	90
31	Mitochondrial Aldehyde Dehydrogenase 2 Plays Protective Roles in Heart Failure After Myocardial Infarction via Suppression of the Cytosolic JNK/p53 Pathway in Mice. Journal of the American Heart Association, 2014, 3, e000779.	3.7	89
32	Diphtheria Toxin-induced Autophagic Cardiomyocyte Death Plays a Pathogenic Role in Mouse Model of Heart Failure. Journal of Biological Chemistry, 2004, 279, 41095-41103.	3.4	86
33	DNA single-strand break-induced DNA damage response causes heart failure. Nature Communications, 2017, 8, 15104.	12.8	85
34	Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H512-H522.	3.2	81
35	Beating is necessary for transdifferentiation of skeletal muscleâ€derived cells into cardiomyocytes. FASEB Journal, 2003, 17, 1361-1363.	0.5	76
36	Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 297-302.	7.1	73

#	Article	IF	CITATIONS
37	Csx/Nkx2-5 Is Required for Homeostasis and Survival of Cardiac Myocytes in the Adult Heart. Journal of Biological Chemistry, 2002, 277, 24735-24743.	3.4	70
38	Heat Shock Transcription Factor 1 Protects Cardiomyocytes From Ischemia/Reperfusion Injury. Circulation, 2003, 108, 3024-3030.	1.6	70
39	Hypercoagulable State in Patients with Takayasu's Arteritis. Thrombosis and Haemostasis, 1996, 75, 712-716.	3.4	69
40	Molecular Cloning and Characterization of Human Cardiac Homeobox Gene <i>CSX1</i> . Circulation Research, 1996, 79, 920-929.	4.5	66
41	Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy. Hypertension, 2011, 58, 1099-1110.	2.7	64
42	Pleiotropic Effects of Cytokines on Acute Myocardial Infarction: G-CSF as A Novel Therapy for Acute Myocardial Infarction. Current Pharmaceutical Design, 2003, 9, 1121-1127.	1.9	61
43	Functional Analyses of Three Csx/Nkx-2.5 Mutations That Cause Human Congenital Heart Disease. Journal of Biological Chemistry, 2000, 275, 35291-35296.	3.4	54
44	Pathophysiology and Management of Cardiovascular Manifestations in Marfan and Loeys–Dietz Syndromes. International Heart Journal, 2016, 57, 271-277.	1.0	54
45	A novel mechanism of mechanical stress-induced angiotensin II type 1–receptor activation without the involvement of angiotensin II. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 393-399.	3.0	53
46	Deficiency of <i>Myo18B</i> in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes To Cells, 2008, 13, 987-999.	1.2	53
47	A DPP-4 Inhibitor Suppresses Fibrosis and Inflammation on Experimental Autoimmune Myocarditis in Mice. PLoS ONE, 2015, 10, e0119360.	2.5	52
48	A novel LIM protein Cal promotes cardiac differentiation by association with CSX/NKX2-5. Journal of Cell Biology, 2004, 164, 395-405.	5.2	51
49	PDK1 coordinates survival pathways and β-adrenergic response in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8689-8694.	7.1	51
50	Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling. Nature Communications, 2015, 6, 6241.	12.8	51
51	Pleiotropic Effects of Angiotensin II Receptor Signaling in Cardiovascular Homeostasis and Aging. International Heart Journal, 2015, 56, 249-254.	1.0	47
52	Novel Concept of a Heart-Gut Axis in the Pathophysiology of Heart Failure. Korean Circulation Journal, 2017, 47, 663.	1.9	47
53	Excitation propagation in three-dimensional engineered hearts using decellularized extracellular matrix. Biomaterials, 2014, 35, 7839-7850.	11.4	46
54	Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002670.	3.6	44

#	Article	IF	CITATIONS
55	Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression. Scientific Reports, 2015, 5, 14453.	3.3	42
56	Impact of Pathogenic <i>FBN1</i> Variant Types on the Progression of Aortic Disease in Patients With Marfan Syndrome. Circulation Genomic and Precision Medicine, 2018, 11, e002058.	3.6	42
57	Calpain-dependent Cleavage of N-cadherin Is Involved in the Progression of Post-myocardial Infarction Remodeling. Journal of Biological Chemistry, 2014, 289, 19408-19419.	3.4	40
58	Current therapies and investigational drugs for peripheral arterial disease. Hypertension Research, 2016, 39, 183-191.	2.7	40
59	Discovery of a Small Molecule to Increase Cardiomyocytes and Protect the Heart After Ischemic Injury. JACC Basic To Translational Science, 2018, 3, 639-653.	4.1	40
60	Continuous Blockade of L-Type Ca2+ Channels Suppresses Activation of Calcineurin and Development of Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Hypertension Research, 2002, 25, 117-124.	2.7	38
61	Porphyromonas gingivalis , a periodontal pathogen, enhances myocardial vulnerability, thereby promoting post-infarct cardiac rupture. Journal of Molecular and Cellular Cardiology, 2016, 99, 123-137.	1.9	38
62	Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells. Hypertension Research, 2013, 36, 859-865.	2.7	37
63	Angiotensin II Type 1 and Type 2 Receptor-induced Cell Signaling. Current Pharmaceutical Design, 2013, 19, 2988-2995.	1.9	37
64	Stretch-modulation of second messengers: effects on cardiomyocyte ion transport. Progress in Biophysics and Molecular Biology, 2003, 82, 57-66.	2.9	36
65	Role of Na+–Ca2+ exchanger in myocardial ischemia/reperfusion injury: evaluation using a heterozygous Na+–Ca2+ exchanger knockout mouse model. Biochemical and Biophysical Research Communications, 2004, 314, 849-853.	2.1	35
66	Wnt/β-Catenin Signaling Contributes to Skeletal Myopathy in Heart Failure via Direct Interaction With Forkhead Box O. Circulation: Heart Failure, 2015, 8, 799-808.	3.9	34
67	Sodium calcium exchanger plays a key role in alteration of cardiac function in response to pressure overload. FASEB Journal, 2002, 16, 373-378.	0.5	33
68	Valsartan, independently of AT1 receptor or PPARÎ ³ , suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E286-E296.	3.5	32
69	An EP4 Receptor Agonist Inhibits Cardiac Fibrosis Through Activation of PKA Signaling in Hypertrophied Heart. International Heart Journal, 2017, 58, 107-114.	1.0	32
70	Multivalent ligand–receptor interactions elicit inverse agonist activity of AT1 receptor blockers against stretch-induced AT1 receptor activation. Hypertension Research, 2009, 32, 875-883.	2.7	31
71	Agonist-Independent Constitutive Activity of Angiotensin II Receptor Promotes Cardiac Remodeling in Mice. Hypertension, 2012, 59, 627-633.	2.7	31
72	Mechanisms and functions of agonist-independent activation in the angiotensin II type 1 receptor. Molecular and Cellular Endocrinology, 2009, 302, 140-147.	3.2	29

#	Article	IF	CITATIONS
73	Angiotensin II Peptide Vaccine Protects Ischemic Brain Through Reducing Oxidative Stress. Stroke, 2017, 48, 1362-1368.	2.0	29
74	High-throughput single-molecule RNA imaging analysis reveals heterogeneous responses of cardiomyocytes to hemodynamic overload. Journal of Molecular and Cellular Cardiology, 2019, 128, 77-89.	1.9	28
75	Infertility with Defective Spermiogenesis in Mice Lacking AF5q31, the Target of Chromosomal Translocation in Human Infant Leukemia. Molecular and Cellular Biology, 2005, 25, 6834-6845.	2.3	27
76	Angiotensin II Type 1 Receptor Signaling Regulates Feeding Behavior through Anorexigenic Corticotropin-releasing Hormone in Hypothalamus. Journal of Biological Chemistry, 2011, 286, 21458-21465.	3.4	27
77	ARB and Cardioprotection. Cardiovascular Drugs and Therapy, 2013, 27, 155-160.	2.6	27
78	Activation of endothelial β-catenin signaling induces heart failure. Scientific Reports, 2016, 6, 25009.	3.3	27
79	Diagnosing Heart Failure from Chest X-Ray Images Using Deep Learning. International Heart Journal, 2020, 61, 781-786.	1.0	26
80	Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD+ protects the heart against pressure overload. Scientific Reports, 2015, 5, 15857.	3.3	25
81	A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Scientific Reports, 2017, 7, 43920.	3.3	25
82	Dual effects of the homeobox transcription factor Csx/Nkx2–5 on cardiomyocytes. Biochemical and Biophysical Research Communications, 2002, 298, 493-500.	2.1	24
83	Plasma Endothelin-1 Levels in Takayasu's Arteritis. Cardiology, 1996, 87, 303-305.	1.4	23
84	Periodontitis deteriorates peripheral arterial disease in Japanese population via enhanced systemic inflammation. Heart and Vessels, 2017, 32, 1314-1319.	1.2	23
85	Molecular and Cellular Mechanisms of Mechanical Stress-Induced Cardiac Hypertrophy Endocrine Journal, 2002, 49, 1-13.	1.6	22
86	Identification of a novel compound that inhibits both mitochondria-mediated necrosis and apoptosis. Biochemical and Biophysical Research Communications, 2015, 467, 1006-1011.	2.1	22
87	Specific heart muscle disease associated with glycogen storage disease type III: clinical similarity to the dilated phase of hypertrophic cardiomyopathy. European Heart Journal, 1997, 18, 532-533.	2.2	21
88	Inhibitory Molecules in Signal Transduction Pathways of Cardiac Hypertrophy Hypertension Research, 2002, 25, 491-498.	2.7	21
89	Angiotensin II Type 1a Receptor Signals are Involved in the Progression of Heart Failure in MLP-Deficient Mice. Circulation Journal, 2007, 71, 1958-1964.	1.6	21
90	Novel Regulation of Cardiac Metabolism and Homeostasis by the Adrenomedullin-Receptor Activity-Modifying Protein 2 System. Hypertension, 2013, 61, 341-351.	2.7	21

#	Article	IF	CITATIONS
91	The dawning of the digital era in the management of hypertension. Hypertension Research, 2020, 43, 1135-1140.	2.7	21
92	A Fatal Case of Myocarditis Following Myositis Induced by Pembrolizumab Treatment for Metastatic Upper Urinary Tract Urothelial Carcinoma. International Heart Journal, 2020, 61, 1070-1074.	1.0	21
93	High Incidence of Periodontitis in Japanese Patients With Abdominal Aortic Aneurysm. International Heart Journal, 2014, 55, 268-270.	1.0	20
94	Angiotensin II receptor blocker irbesartan attenuates cardiac dysfunction induced by myocardial infarction in the presence of renal failure. Hypertension Research, 2016, 39, 237-244.	2.7	20
95	Cost-Effectiveness Analysis of Cardiovascular Disease Treatment in Japan. International Heart Journal, 2017, 58, 847-852.	1.0	20
96	Periodontitis in Cardiovascular Disease Patients with or without Marfan Syndrome -A Possible Role of Prevotella intermedia PLoS ONE, 2014, 9, e95521.	2.5	18
97	Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE, 2016, 11, e0156562.	2.5	18
98	Deep Learning Algorithm to Detect Cardiac Sarcoidosis From Echocardiographic Movies. Circulation Journal, 2021, 86, 87-95.	1.6	16
99	A Crucial Role of Activin A-Mediated Growth Hormone Suppression in Mouse and Human Heart Failure. PLoS ONE, 2011, 6, e27901.	2.5	15
100	Mechanisms of Cardiovascular Homeostasis and Pathophysiology – From Gene Expression, Signal Transduction to Cellular Communication –. Circulation Journal, 2015, 79, 2529-2536.	1.6	15
101	Myocardial energy provision is preserved by increased utilization of glucose and ketone bodies in CD36 knockout mice. Metabolism: Clinical and Experimental, 2015, 64, 1165-1174.	3.4	15
102	High incidence of Aggregatibacter actinomycetemcomitansinfection in patients with cerebral infarction and diabetic renal failure: a cross-sectional study. BMC Infectious Diseases, 2013, 13, 557.	2.9	14
103	Deep learning model to detect significant aortic regurgitation using electrocardiography. Journal of Cardiology, 2022, 79, 334-341.	1.9	14
104	Coronary aneurysm reduced after coronary stenting. International Journal of Cardiology, 2007, 121, 76-77.	1.7	13
105	High incidence and severity of periodontitis in patients with Marfan syndrome in Japan. Heart and Vessels, 2015, 30, 692-695.	1.2	13
106	Incidence of periodontitis in Japanese patients with cardiovascular diseases: a comparison between abdominal aortic aneurysm and arrhythmia. Heart and Vessels, 2015, 30, 498-502.	1.2	13
107	Roles of renin-angiotensin system and Wnt pathway in aging-related phenotypes. Inflammation and Regeneration, 2016, 36, 12.	3.7	13
108	Mechanisms and Management of Immune Checkpoint Inhibitor-Related Cardiac Adverse Events. JMA Journal, 2021, 4, 91-98.	0.8	13

#	Article	IF	CITATIONS
109	Direct measurement of Ca2+ concentration in the SR of living cardiac myocytes. Biochemical and Biophysical Research Communications, 2004, 314, 1014-1020.	2.1	12
110	Distinct variants affecting differential splicing of TGFBR1 exon 5 cause either Loeys–Dietz syndrome or multiple self-healing squamous epithelioma. European Journal of Human Genetics, 2018, 26, 1151-1158.	2.8	12
111	Automatic detection of vessel structure by deep learning using intravascular ultrasound images of the coronary arteries. PLoS ONE, 2021, 16, e0255577.	2.5	12
112	Periodontitis and myocardial hypertrophy. Hypertension Research, 2017, 40, 324-328.	2.7	11
113	Japanese Cardiovascular Disease Patients with Diabetes Mellitus Suffer Increased Tooth Loss in Comparison to Those without Diabetes Mellitus -A Cross-sectional Study. Internal Medicine, 2018, 57, 777-782.	0.7	11
114	The JAPAN-FORTA (Fit fOR The Aged) list: Consensus validation of a clinical tool to improve drug therapy in older adults. Archives of Gerontology and Geriatrics, 2020, 91, 104217.	3.0	11
115	A Periodontal pathogen Porphyromonas gingivalis deteriorates Isoproterenol-Induced myocardial remodeling in mice. Hypertension Research, 2017, 40, 35-40.	2.7	10
116	Specific periodontopathic bacterial infection affects hypertension in male cardiovascular disease patients. Heart and Vessels, 2018, 33, 198-204.	1.2	10
117	Periodontitis and Diabetes Mellitus. International Heart Journal, 2018, 59, 680-682.	1.0	10
118	Cancer Therapeutics-Related Cardiac Dysfunction ― Insights From Bench and Bedside of Onco-Cardiology ―. Circulation Journal, 2020, 84, 1446-1453.	1.6	10
119	The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms. International Heart Journal, 2021, 62, 1332-1341.	1.0	10
120	Too much Csx/Nkx2-5 is as bad as too little?. Journal of Molecular and Cellular Cardiology, 2003, 35, 227-229.	1.9	9
121	Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling. PLoS ONE, 2015, 10, e0129394.	2.5	9
122	Understanding Vascular Diseases: Lessons From PrematureÂAging Syndromes. Canadian Journal of Cardiology, 2016, 32, 650-658.	1.7	9
123	Pressure Overload Impairs Cardiac Function in Long-Chain Fatty Acid Transporter CD36-Knockout Mice. International Heart Journal, 2019, 60, 159-167.	1.0	9
124	Detrimental effects of specific Periodontopathic bacterial infection on tachyarrhythmia compared to Bradyarrhythmia. BMC Cardiovascular Disorders, 2017, 17, 267.	1.7	7
125	Cardiac Sarcoidosis Diagnosed by Incidental Lymph Node Biopsy. International Heart Journal, 2017, 58, 140-143.	1.0	7
126	Cardio-Oncology in Japan. JACC: CardioOncology, 2020, 2, 815-818.	4.0	7

#	Article	IF	CITATIONS
127	Abdominal aortic pseudoaneurysm caused by prolonged methicillin-resistant Staphylococcus aureus sepsis. International Journal of Cardiology, 2008, 128, 294-295.	1.7	6
128	Dickkopf-3: a stubborn protector of cardiac hypertrophy. Cardiovascular Research, 2014, 102, 6-8.	3.8	6
129	Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors. PLoS ONE, 2015, 10, e0127445.	2.5	6
130	Periodontitis May Deteriorate Sinus of Valsalva Dilatation in Marfan Syndrome Patients. International Heart Journal, 2016, 57, 456-460.	1.0	6
131	Suppression of murine autoimmune myocarditis achieved with direct renin inhibition. Journal of Cardiology, 2016, 68, 253-260.	1.9	6
132	Cacao polyphenols ameliorate autoimmune myocarditis in mice. Hypertension Research, 2016, 39, 203-209.	2.7	6
133	Prospects for cardiovascular medicine using artificial intelligence. Journal of Cardiology, 2022, 79, 319-325.	1.9	6
134	Multiple Saccular Aneurysm Formation in a Patient with Bilateral Coronary Artery Fistula: A Case Report and Review of the Literature. Cardiology, 1995, 86, 174-176.	1.4	5
135	Right ventricular dysplasia with complete atrioventricular block: Necessity and limitation of left ventricular epicardial pacing. Clinical Cardiology, 1998, 21, 604-606.	1.8	5
136	Assessment of Inverse Agonism for the Angiotensin II Type 1 Receptor. Methods in Enzymology, 2010, 485, 25-35.	1.0	5
137	Coronary Artery Aneurysm Caused by a Stent Fracture. International Heart Journal, 2018, 59, 203-208.	1.0	5
138	Axitinib Induces and Aggravates Hypertension Regardless of Prior Treatment With Tyrosine Kinase Inhibitors. Circulation Reports, 2021, 3, 234-240.	1.0	5
139	Oxidized LDL but not angiotensin II induces cardiomyocyte hypertrophic responses through the interaction between LOX-1 and AT1 receptors. Journal of Molecular and Cellular Cardiology, 2022, 162, 110-118.	1.9	5
140	Ca2+—Dependent Signaling Pathways Through Calcineurin and Ca2+ Calmodulin—Dependent Protein Kinase in Development of Cardiac Hypertrophy. Progress in Experimental Cardiology, 2003, , 85-94.	0.0	5
141	Navigational error in the heart leads to premature ventricular excitation. Journal of Clinical Investigation, 2011, 121, 513-516.	8.2	5
142	Three-Dimensional Visualization of Hypoxia-Induced Pulmonary Vascular Remodeling in Mice. Circulation, 2021, 144, 1452-1455.	1.6	5
143	A Novel Bioabsorbable Sheet That Delivers NF-κB Decoy Oligonucleotide Restrains Abdominal Aortic Aneurysm Development in Rats. International Heart Journal, 2018, 59, 1134-1141.	1.0	4
144	Inhibition of transforming growth factor-β signaling in myeloid cells ameliorates aortic aneurysmal formation in Marfan syndrome. PLoS ONE, 2020, 15, e0239908.	2.5	4

#	Article	IF	CITATIONS
145	Antihypertensive Drugs and Cancer Risk. American Journal of Hypertension, 2022, 35, 767-783.	2.0	4
146	Takayasu arteritis evaluated by multi-slice computed tomography in an old man. International Journal of Cardiology, 2008, 125, 286-287.	1.7	3
147	Congenital Contractural Arachnodactyly without <i>FBN1</i> or <i>FBN2</i> Gene Mutations Complicated by Dilated Cardiomyopathy. Internal Medicine, 2015, 54, 1237-1241.	0.7	3
148	A Case of Multiple Coronary Artery-Left Ventricular Micro Fistulae Complicated With Hepatic Arteriovenous Fistulae. International Heart Journal, 2016, 57, 123-126.	1.0	3
149	Heart Failure Complicated by Alveolar Hemorrhage due to Vascular Collapse and Amyloid Deposits in Wild-Type Transthyretin Amyloidosis. Cardiology, 2016, 135, 216-220.	1.4	3
150	Toll-like receptor 4 signaling has a critical role in Porphyromonas gingivalis-accelerated neointimal formation after arterial injury in mice. Hypertension Research, 2016, 39, 717-722.	2.7	3
151	Direct left atrial ICE imaging guided ablation for atrial fibrillation without employing contrast medium. International Journal of Cardiology, 2016, 203, 733-739.	1.7	3
152	Correct Diagnosis of Wild-Type Transthyretin-Related Amyloidosis Followed by the Introduction of a Novel Therapy in a Patient With Cardiac Wall Thickening of Unknown Cause. International Heart Journal, 2017, 58, 147-150.	1.0	3
153	MicroRNAs as biomarkers for cardiac sarcoidosis: No matter how small. Journal of Cardiology, 2018, 72, 449-451.	1.9	3
154	Mechanical Stress Induces Cardiomyocyte Hypertrophy Through Agonist-Independent Activation of Angiotensin II Type 1 Receptor. , 2010, , 83-95.		3
155	"Change can happen―by PKA: Proteasomes in in vivo hearts. Journal of Molecular and Cellular Cardiology, 2009, 46, 445-447.	1.9	2
156	OCT-Based Management of Nilotinib-Associated CAD in a Patient With Chronic Myeloid Leukemia. JACC: CardioOncology, 2019, 1, 318-321.	4.0	2
157	Detection of Profound Myocardial Damage by Cardiac MRI in a Patient with Severe Cardiotoxicity Induced by Anti-HER2 Therapy. International Heart Journal, 2021, 62, 1436-1441.	1.0	2
158	Nonsyndromic arteriopathy and aortopathy and vascular Ehlers–Danlos syndrome <scp>causing <i>COL3A1</i></scp> variants. American Journal of Medical Genetics, Part A, 2022, 188, 2777-2782.	1.2	2
159	MicroRNA-99a. International Heart Journal, 2017, 58, 310-312.	1.0	1
160	Factors associated with left ventricular reverse remodelling after percutaneous coronary intervention in patients with left ventricular systolic dysfunction. Scientific Reports, 2021, 11, 239.	3.3	1
161	Oral Administration of <i>Euglena Gracilis</i> Z Alleviates Constipation and Cardiac Dysfunction in a Mouse Model of Isoproterenol-Induced Heart Failure. Circulation Reports, 2022, 4, 83-91.	1.0	1
162	Sick Sinus Syndrome: More Than a Needle-in-a-haystack Manifestation of Immune Checkpoint Inhibitor-associated Myocarditis. Internal Medicine, 2022, , .	0.7	1

HIROSHI AKAZAWA

#	Article	IF	CITATIONS
163	Cardiac Arrest Triggered by Subepicardial Aneurysm Without Cardiac Rupture. Circulation Journal, 2016, 80, 538-540.	1.6	Ο
164	Pathophysiological Role of Chronic Inflammation in Ageing-Associated Diseases. , 2016, , 541-553.		0
165	The Mechanism and Role of Inflammation in the Pathogenesis of Atrial Fibrillation. Japanese Journal of Electrocardiology, 2013, 33, 163-169.	0.0	0
166	The Current Status and Future Perspective of Cardio-Oncology. The Journal of the Japanese Society of Internal Medicine, 2020, 109, 819-826.	0.0	0