Gwenn E Flowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4107360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling channelized and distributed subglacial drainage in two dimensions. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2140-2158.	2.8	200
2	Surges of glaciers in Iceland. Annals of Glaciology, 2003, 36, 82-90.	1.4	167
3	A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. Journal of Geophysical Research, 2002, 107, ECV 9-1-ECV 9-17.	3.3	128
4	Modelling water flow under glaciers and ice sheets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140907.	2.1	120
5	A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 537-558.	2.1	97
6	A coupled sheet-conduit mechanism for jökulhlaup propagation. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	89
7	Subglacial erosion and englacial sediment transport modelled for North American ice sheets. Quaternary Science Reviews, 2004, 23, 409-430.	3.0	86
8	Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 2013, 7, 1185-1192.	3.9	80
9	Five decades of radioglaciology. Annals of Glaciology, 2020, 61, 1-13.	1.4	74
10	Inexpensive laser cooling and trapping experiment for undergraduate laboratories. American Journal of Physics, 1995, 63, 317-330.	0.7	72
11	Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment. Remote Sensing, 2014, 6, 946-963.	4.0	72
12	Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. Journal of Geophysical Research, 2005, 110, .	3.3	66
13	Present dynamics and future prognosis of a slowly surging glacier. Cryosphere, 2011, 5, 299-313.	3.9	63
14	Spatial and Temporal Transferability of a Distributed Energy-Balance Glacier Melt Model. Journal of Climate, 2011, 24, 1480-1498.	3.2	54
15	A multicomponent coupled model of glacier hydrology 2. Application to Trapridge Glacier, Yukon, Canada. Journal of Geophysical Research, 2002, 107, ECV 10-1-ECV 10-16.	3.3	53
16	Holocene climate conditions and glacier variation in central Iceland from physical modelling and empirical evidence. Quaternary Science Reviews, 2008, 27, 797-813.	3.0	53
17	Simulation of Vatnajökull ice cap dynamics. Journal of Geophysical Research, 2005, 110, .	3.3	49
18	Subglacial modulation of the hydrograph from glacierized basins. Hydrological Processes, 2008, 22, 3903-3918.	2.6	49

GWENN E FLOWERS

#	Article	IF	CITATIONS
19	A hydrologically coupled higherâ€order flowâ€band model of ice dynamics with a Coulomb friction sliding law. Journal of Geophysical Research, 2010, 115, .	3.3	48
20	The influence of human activity in the Arctic on climate and climate impacts. Climatic Change, 2007, 82, 77-92.	3.6	47
21	Hydrology and the future of the Greenland Ice Sheet. Nature Communications, 2018, 9, 2729.	12.8	47
22	New insights into the subglacial and periglacial hydrology of Vatnajökull, Iceland, from a distributed physical model. Journal of Glaciology, 2003, 49, 257-270.	2.2	45
23	Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry. Journal of Glaciology, 1999, 45, 165-174.	2.2	43
24	Glacier fluctuation and inferred climatology of Langjökull ice cap through the Little Ice Age. Quaternary Science Reviews, 2007, 26, 2337-2353.	3.0	42
25	Efficacy of bedrock erosion by subglacial water flow. Earth Surface Dynamics, 2016, 4, 125-145.	2.4	40
26	Oscillatory subglacial drainage in the absence of surface melt. Cryosphere, 2014, 8, 959-976.	3.9	39
27	An integrated lightweight ice-penetrating radar system. Journal of Glaciology, 2010, 56, 709-714.	2.2	36
28	Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage. Geomorphology, 2014, 219, 176-191.	2.6	32
29	Dynamics of a small surge-type glacier using one-dimensional geophysical inversion. Journal of Glaciology, 2009, 55, 1101-1112.	2.2	31
30	Clay mineral precipitation and low silica in glacier meltwaters explored through reaction-path modelling. Journal of Claciology, 2015, 61, 1061-1078.	2.2	31
31	Comparison of thermal structure and evolution between neighboring subarctic glaciers. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1443-1459.	2.8	30
32	Modeling Sediment Transport in Iceâ€Walled Subglacial Channels and Its Implications for Esker Formation and Proglacial Sediment Yields. Journal of Geophysical Research F: Earth Surface, 2018, 123, 3206-3227.	2.8	28
33	A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. Cryosphere, 2011, 5, 1011-1028.	3.9	27
34	Sensitivity of Barnes Ice Cap, Baffin Island, Canada, to climate state and internal dynamics. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1516-1539.	2.8	26
35	Excavation of subglacial bedrock channels by seasonal meltwater flow. Earth Surface Processes and Landforms, 2018, 43, 1960-1972.	2.5	24
36	Environmental controls on the thermal structure of alpine glaciers. Cryosphere, 2013, 7, 167-182.	3.9	23

GWENN E FLOWERS

#	Article	IF	CITATIONS
37	Effects of Temperature Forcing Provenance and Extrapolation on the Performance of an Empirical Glacier-Melt Model. Arctic, Antarctic, and Alpine Research, 2014, 46, 379-393.	1.1	22
38	The projected demise of Barnes Ice Cap: Evidence of an unusually warm 21st century Arctic. Geophysical Research Letters, 2017, 44, 2810-2816.	4.0	22
39	Evidence for Elevation-Dependent Warming in the St. Elias Mountains, Yukon, Canada. Journal of Climate, 2020, 33, 3253-3269.	3.2	22
40	Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry. Journal of Glaciology, 1999, 45, 165-174.	2.2	22
41	Glacier subsurface heat-flux characterizations for energy-balance modelling in the Donjek Range, southwest Yukon, Canada. Journal of Glaciology, 2011, 57, 121-133.	2.2	21
42	Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap. Quaternary Science Reviews, 2018, 190, 39-56.	3.0	18
43	An integrated modelling approach to understanding subglacial hydraulic release events. Annals of Glaciology, 2000, 31, 222-228.	1.4	17
44	Changes in geometry and subglacial drainage derived from digital elevation models: Unteraargletscher, Switzerland, 1927–97. Annals of Glaciology, 2005, 40, 20-24.	1.4	16
45	Correlations of suspended sediment size with bedrock lithology and glacier dynamics. Annals of Glaciology, 2016, 57, 142-150.	1.4	15
46	Bedrock Fracture Characteristics as a Possible Control on the Distribution of Surgeâ€Type Glaciers. Journal of Geophysical Research F: Earth Surface, 2018, 123, 853-873.	2.8	14
47	Contemporary Glacier Processes and Global Change: Recent Observations from Kaskawulsh Glacier and the Donjek Range, St. Elias Mountains. Arctic, 2014, 67, 22.	0.4	14
48	Design and Analysis of Experiments on Nonconvex Regions. Technometrics, 2017, 59, 36-47.	1.9	13
49	The Role of Englacial Hydrology in the Filling and Drainage of an Iceâ€Dammed Lake, Kaskawulsh Glacier, Yukon, Canada. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005110.	2.8	13
50	Flow Routing for Delineating Supraglacial Meltwater Channel Networks. Remote Sensing, 2016, 8, 988.	4.0	12
51	Modelling intra-annual dynamics of a major marine-terminating Arctic glacier. Annals of Glaciology, 2017, 58, 118-130.	1.4	12
52	Short-term velocity variations and sliding sensitivity of a slowly surging glacier. Annals of Glaciology, 2016, 57, 71-83.	1.4	11
53	Seismologically Observed Spatiotemporal Drainage Activity at Moulins. Journal of Geophysical Research: Solid Earth, 2017, 122, 9095-9108.	3.4	11
54	Estimating winter balance and its uncertainty from direct measurements of snow depth and density on alpine glaciers. Journal of Glaciology, 2018, 64, 781-795.	2.2	10

GWENN E FLOWERS

#	Article	IF	CITATIONS
55	Controls on the lifespans of Icelandic ice caps. Earth and Planetary Science Letters, 2019, 527, 115780.	4.4	10
56	A stationary impulse-radar system for autonomous deployment in cold and temperate environments. Annals of Glaciology, 2020, 61, 99-107.	1.4	8
57	Mapping and interpretation of bed-reflection power from a surge-type polythermal glacier, Yukon, Canada. Annals of Glaciology, 2014, 55, 1-8.	1.4	7
58	Glacier hydromechanics: early insights and the lasting legacy of three works by Iken and colleagues. Journal of Glaciology, 2010, 56, 1069-1078.	2.2	5
59	An imbalancing act: the delayed dynamic response of the Kaskawulsh Glacier to sustained mass loss. Journal of Glaciology, 2021, 67, 313-330.	2.2	5
60	Characterization of glacial silt and clay using automated mineralogy. Annals of Glaciology, 2019, 60, 49-65.	1.4	2
61	Kinematic evolution of kilometre-scale fold trains in surge-type glaciers explored with a numerical model. Journal of Structural Geology, 2022, 161, 104644.	2.3	2
62	Canadian Glacier Hydrology, 2003-2007. Canadian Water Resources Journal, 2009, 34, 195-204.	1.2	1
63	Design and Analysis of Experiments on Nonconvex Regions. Technometrics, 2017, , 1-12.	1.9	Ο
64	Pursuit of Optimal Design for Winter-Balance Surveys of Valley-Glacier Ablation Areas. Frontiers in Earth Science, 2019, 7, .	1.8	0