Jian-Bo Wu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4107179/jian-bo-wu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 7,904 41 121 h-index g-index citations papers 11.8 6.39 9,706 123 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
121	Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research, 2013, 46, 1848-57	24.3	774
120	Solar-driven interfacial evaporation. <i>Nature Energy</i> , 2018 , 3, 1031-1041	62.3	715
119	Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4984-5	16.4	459
118	Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11880-3	16.4	445
117	Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. <i>Nano Letters</i> , 2011 , 11, 798-802	11.5	407
116	Surface strategies for catalytic CO reduction: from two-dimensional materials to nanoclusters to single atoms. <i>Chemical Society Reviews</i> , 2019 , 48, 5310-5349	58.5	365
115	Temperature effect and thermal impact in lithium-ion batteries: A review. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 653-666	3.6	282
114	Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. <i>Chemical Society Reviews</i> , 2012 , 41, 8066-74	58.5	215
113	Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation. <i>ACS Applied Materials & Discrete Mater</i>	9.5	187
112	Epitaxial Growth of Twinned Au-Pt Core-Shell Star-Shaped Decahedra as Highly Durable Electrocatalysts. <i>Nano Letters</i> , 2015 , 15, 7808-15	11.5	168
111	Coupling Interface Constructions of MoS /Fe Ni S Heterostructures for Efficient Electrochemical Water Splitting. <i>Advanced Materials</i> , 2018 , 30, e1803151	24	163
110	Bioinspired Bifunctional Membrane for Efficient Clean Water Generation. <i>ACS Applied Materials & Acs Applied Materials</i>	9.5	152
109	Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. <i>Nano Letters</i> , 2013 , 13, 2870-4	11.5	150
108	Synthesis and Oxygen Reduction Electrocatalytic Property of Platinum Hollow and Platinum-on-Silver Nanoparticles <i>Chemistry of Materials</i> , 2010 , 22, 1098-1106	9.6	138
107	Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16359-16368	13	127
106	Electrochemical synthesis and catalytic property of sub-10 nm platinum cubic nanoboxes. <i>Nano Letters</i> , 2010 , 10, 1492-6	11.5	123
105	Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. <i>ACS Nano</i> , 2019 , 13, 11561-11571	16.7	117

(2015-2015)

104	The impact of surface chemistry on the performance of localized solar-driven evaporation system. <i>Scientific Reports</i> , 2015 , 5, 13600	4.9	117
103	Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 23412-8	9.5	109
102	Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage. <i>Nature Communications</i> , 2017 , 8, 1478	17.4	101
101	A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. <i>ACS Nano</i> , 2019 , 13, 1547-1554	16.7	93
100	Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. <i>Nano Letters</i> , 2015 , 15, 2711-5	11.5	90
99	In Situ Vertical Growth of FeNi Layered Double-Hydroxide Arrays on FeNi Alloy Foil: Interfacial Layer Enhanced Electrocatalyst with Small Overpotential for Oxygen Evolution Reaction. <i>ACS Energy Letters</i> , 2018 , 3, 2357-2365	20.1	90
98	In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. <i>Advanced Materials</i> , 2016 , 28, 9686-9712	24	88
97	Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions. <i>Nano Letters</i> , 2016 , 16, 7999-8004	11.5	80
96	Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction. <i>Small</i> , 2017 , 13, 1603423	11	76
95	Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment. <i>Advanced Materials</i> , 2017 , 29, 1703460	24	74
94	Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials. <i>Energy and Environmental Science</i> , 2019 , 12, 1613-1621	35.4	74
93	Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. <i>Nano Research</i> , 2011 , 4, 72-82	10	72
92	High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. <i>Nature Communications</i> , 2020 , 11, 954	17.4	70
91	Floating rGO-based black membranes for solar driven sterilization. <i>Nanoscale</i> , 2017 , 9, 19384-19389	7.7	68
90	Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by in Situ Liquid Transmission Electron Microscopy. <i>ACS Nano</i> , 2017 , 11, 1696-1703	16.7	65
89	Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. <i>Nature Communications</i> , 2018 , 9, 1011	17.4	64
88	Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction. <i>Nano Letters</i> , 2018 , 18, 5905-5912	11.5	58
87	Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers. <i>Scientific Reports</i> , 2015 , 5, 17276	4.9	50

86	Form-Stable Solar Thermal Heat Packs Prepared by Impregnating Phase-Changing Materials within Carbon-Coated Copper Foams. <i>ACS Applied Materials & Description of the Carbon-Coated Copper Foams</i> . <i>ACS Applied Materials & Description of the Carbon-Coated Copper Foams</i> . <i>ACS Applied Materials & Description of the Carbon-Coated Copper Foams</i> .	9.5	49
85	Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts. <i>Nano Letters</i> , 2019 , 19, 1371-1378	11.5	49
84	High-Efficiency Superheated Steam Generation for Portable Sterilization under Ambient Pressure and Low Solar Flux. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 18466-18474	9.5	48
83	Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction. <i>Nanoscale</i> , 2014 , 6, 7012-8	7.7	47
82	Thermal conductivity of suspended few-layer MoS. <i>Nanoscale</i> , 2018 , 10, 2727-2734	7.7	46
81	Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry. <i>Nano Letters</i> , 2017 , 17, 6146-6150	11.5	43
80	Intraoperative Raman-Guided Chemo-Photothermal Synergistic Therapy of Advanced Disseminated Ovarian Cancers. <i>Small</i> , 2018 , 14, e1801022	11	41
79	Three-Dimensional Porous Solar-Driven Interfacial Evaporator for High-Efficiency Steam Generation under Low Solar Flux. <i>ACS Omega</i> , 2019 , 4, 3546-3555	3.9	39
78	Atomically Dispersed Indium Sites for Selective CO Electroreduction to Formic Acid. <i>ACS Nano</i> , 2021 , 15, 5671-5678	16.7	38
77	Mastering the surface strain of platinum catalysts for efficient electrocatalysis. <i>Nature</i> , 2021 , 598, 76-8	3 1 50.4	37
76	Patterned Surfaces for Solar-Driven Interfacial Evaporation. <i>ACS Applied Materials & Description of the Patterned Surfaces of the Patterned Surface</i>	9.5	36
75	Stably dispersed high-temperature Fe3O4/silicone-oil nanofluids for direct solar thermal energy harvesting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17503-17511	13	35
74	Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation. <i>Nanoscale</i> , 2017 , 9, 11077-11084	7.7	35
73	Enhancing the Photocatalytic Hydrogen Evolution Performance of a Metal/Semiconductor Catalyst through Modulation of the Schottky Barrier Height by Controlling the Orientation of the Interface. <i>ACS Applied Materials & Diterfaces</i> , 2017 , 9, 12494-12500	9.5	33
72	Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics. <i>Applied Thermal Engineering</i> , 2016 , 95, 445-453	5.8	33
71	General solution route for nanoplates of hexagonal oxide or hydroxide. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11196-8	3.4	33
70	Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 20483-90	9.5	32
69	Strong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single-Atom Pt toward Enhanced Carbon Monoxide Oxidation. <i>Advanced Functional Materials</i> , 2019 , 29, 1904278	15.6	32

(2020-2019)

68	Visualization of fast Bydrogen pumplin corellhell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14629-14637	13	30
67	Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. <i>Science Advances</i> , 2019 , 5, eaau9590	14.3	29
66	Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12362-12365	16.4	29
65	Photothermally Enabled Pyro-Catalysis of a BaTiO Nanoparticle Composite Membrane at the Liquid/Air Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21246-21253	9.5	27
64	An open thermo-electrochemical cell enabled by interfacial evaporation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6514-6521	13	27
63	Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction. <i>Science Bulletin</i> , 2018 , 63, 494-501	10.6	26
62	Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified butterfly wings for sensitive hydrogen gas sensing <i>RSC Advances</i> , 2018 , 8, 32395-32400	3.7	25
61	Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysis. <i>CheM</i> , 2020 , 6, 2257-2271	16.2	24
60	Single-crystalline Pd square nanoplates enclosed by {100} facets on reduced graphene oxide for formic acid electro-oxidation. <i>Chemical Communications</i> , 2016 , 52, 14204-14207	5.8	23
59	Bioinspired Infrared Sensing Materials and Systems. <i>Advanced Materials</i> , 2018 , 30, e1707632	24	23
58	In situ ETEM study of composition redistribution in Pt-Ni octahedral catalysts for electrochemical reduction of oxygen. <i>AICHE Journal</i> , 2016 , 62, 399-407	3.6	19
57	High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. <i>Energy and Environmental Science</i> , 2021 , 14, 3194-3202	35.4	19
56	Clean water generation with switchable dispersion of multifunctional Fe3O4-reduced graphene oxide particles. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 422-429	3.6	18
55	Ternary Pt P d A g alloy nanoflowers for oxygen reduction reaction electrocatalysis. <i>CrystEngComm</i> , 2017 , 19, 6964-6971	3.3	18
54	Enhanced stability of (111)-surface-dominant core-shell nanoparticle catalysts towards the oxygen reduction reaction. <i>ChemSusChem</i> , 2013 , 6, 1888-92	8.3	18
53	Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction. <i>IScience</i> , 2020 , 23, 101532	6.1	18
52	Butterfly Wing Hears Sound: Acoustic Detection Using Biophotonic Nanostructure. <i>Nano Letters</i> , 2019 , 19, 2627-2633	11.5	17
51	Confinement Effect of Mesopores: In Situ Synthesis of Cationic Tungsten-Vacancies for a Highly Ordered Mesoporous Tungsten Phosphide Electrocatalyst. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2020 , 12, 22741-22750	9.5	17

50	Proton selective adsorption on PtNi nano-thorn array electrodes for superior hydrogen evolution activity. <i>Energy and Environmental Science</i> , 2021 , 14, 1594-1601	35.4	17
49	PdCu alloy nanodendrites with tunable composition as highly active electrocatalysts for methanol oxidation. <i>RSC Advances</i> , 2017 , 7, 5800-5806	3.7	16
48	Pyroelectric Synthesis of Metal B aTiO3 Hybrid Nanoparticles with Enhanced Pyrocatalytic Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2602-2609	8.3	16
47	Amorphous CrWO-Modified WO Nanowires with a Large Specific Surface Area and Rich Lewis Acid Sites: A Highly Efficient Catalyst for Oxidative Desulfurization. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 38140-38152	9.5	15
46	In situ chemical vapor reaction in molten salts for preparation of platinum nanosheets via bubble breakage. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12046		14
45	Single-site Pt-doped RuO hollow nanospheres with interstitial C for high-performance acidic overall water splitting <i>Science Advances</i> , 2022 , 8, eabl9271	14.3	14
44	Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. <i>ACS Nano</i> , 2021 , 15, 7348-7356	16.7	13
43	Facile synthesis of PtCu3 alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation. <i>CrystEngComm</i> , 2016 , 18, 7823-7830	3.3	13
42	Origin of Photocatalytic Activity in Ti4+/Ti3+ CoreBhell Titanium Oxide Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 20949-20959	3.8	12
41	Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16477-16486	13	12
40	Electrically Driven Interfacial Evaporation for High-Efficiency Steam Generation and Sterilization. <i>ACS Omega</i> , 2019 , 4, 16603-16611	3.9	11
39	Solar-driven high-temperature steam generation at ambient pressure. <i>Progress in Natural Science: Materials International</i> , 2019 , 29, 10-15	3.6	11
38	Ultrathin and stable AgAu alloy nanowires. Science China Materials, 2015, 58, 595-602	7.1	11
37	Bubble-Enabled Underwater Motion of a Light-Driven Motor. <i>Small</i> , 2019 , 15, e1804959	11	11
36	Supportless oxygen reduction electrocatalysts of CoCuPt hollow nanoparticles. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2010 , 368, 4261-74	3	10
35	Controllable assembly of Pd nanosheets: a solution for 2D materials storage. <i>CrystEngComm</i> , 2017 , 19, 3439-3444	3.3	10
34	A Large-Scalable, Surfactant-Free, and Ultrastable Ru-Doped PtCo Oxygen Reduction Catalyst. <i>Nano Letters</i> , 2021 , 21, 6625-6632	11.5	10
33	Ethylene glycol-based solar-thermal fluids dispersed with reduced graphene oxide <i>RSC Advances</i> , 2019 , 9, 10282-10288	3.7	9

(2020-2018)

32	Facets Matching of Platinum and Ferric Oxide in Highly Efficient Catalyst Design for Low-Temperature CO Oxidation. <i>ACS Applied Materials & Design Faces</i> , 2018 , 10, 15322-15327	9.5	8	
31	Study of the Durability of Faceted Pt3Ni Oxygen R eduction Electrocatalysts. <i>ChemCatChem</i> , 2012 , 4, 1572-1577	5.2	8	
30	Heterostructure of ZnO Nanosheets/Zn with a Highly Enhanced Edge Surface for Efficient CO Electrochemical Reduction to CO. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed & Distributed & Dist</i>	9.5	8	
29	Real-Time Visualization of Solid-Phase Ion Migration Kinetics on Nanowire Monolayer. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7968-7975	16.4	7	
28	Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface. <i>ACS Omega</i> , 2019 , 4, 17615-17622	3.9	7	
27	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. <i>ChemNanoMat</i> , 2019 , 5, 1439-1455	3.5	7	
26	Stability of single-atom catalysts for electrocatalysis. Journal of Materials Chemistry A,	13	7	
25	Shape Transformation Mechanism of Gallium I hdium Alloyed Liquid Metal Nanoparticles. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001874	4.6	7	
24	Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings. <i>Nanoscale</i> , 2018 , 10, 533-537	7.7	7	
23	Self-propelled rotation of paper-based Leidenfrost rotor. <i>Applied Physics Letters</i> , 2019 , 114, 113703	3.4	6	
22	Manipulation of Electron Transfer between Pd and TiO for Improved Electrocatalytic Hydrogen Evolution Reaction Performance. <i>ACS Applied Materials & District Research</i> , 12, 27037-27044	9.5	6	
21	Fe containing MoO3 nanowires grown along the [110] direction and their fast selective adsorption of quasi-phenothiazine dyes. <i>CrystEngComm</i> , 2019 , 21, 5106-5114	3.3	6	
20	Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution. <i>Scientific Reports</i> , 2017 , 7, 17243	4.9	6	
19	Highly Surface-Distorted Pt Superstructures for Multifunctional Electrocatalysis. <i>Nano Letters</i> , 2021 , 21, 5075-5082	11.5	6	
18	Understanding of Strain-Induced Electronic Structure Changes in Metal-Based Electrocatalysts: Using Pd@Pt Core-Shell Nanocrystals as an Ideal Platform. <i>Small</i> , 2021 , 17, e2100559	11	6	
17	Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures. <i>ChemNanoMat</i> , 2016 , 2, 37-41	3.5	5	
16	Waste heat recovery in an oscillating heat pipe using interfacial electrical double layers. <i>Applied Physics Letters</i> , 2018 , 112, 243903	3.4	5	
15	Boosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes. <i>ChemElectroChem</i> , 2020 , 7, 2614-2620	4.3	4	

14	Atomistic Imaging of Competition between Surface Diffusion and Phase Transition during the Intermetallic Formation of Faceted Particles. <i>ACS Nano</i> , 2021 , 15, 5284-5293	16.7	4
13	AgPO electrocatalyst for oxygen reduction reaction: enhancement from positive charge <i>RSC Advances</i> , 2018 , 8, 5382-5387	3.7	3
12	Construction of 3D Conductive Network in Liquid Gallium with Enhanced Thermal and Electrical Performance. <i>Advanced Materials Technologies</i> ,2100970	6.8	3
11	Butterfly Wing Inspired High Performance Infrared Detection with Spectral Selectivity. <i>Advanced Optical Materials</i> , 2020 , 8, 1901647	8.1	3
10	Design of Highly Durable Core-Shell Catalysts by Controlling Shell Distribution Guided by In-Situ Corrosion Study. <i>Advanced Materials</i> , 2021 , 33, e2101511	24	3
9	Oxygen Reduction Reaction: Tuning Surface Structure and Strain in Pd P t Core S hell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction (Small 7/2017). <i>Small</i> , 2017 , 13,	11	2
8	A Non-Pt Electronically Coupled Semiconductor Heterojunction for Enhanced Oxygen Reduction Electrocatalytic Property. <i>ChemistrySelect</i> , 2019 , 4, 5264-5268	1.8	2
7	Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 47-58	11.3	2
6	Vapor detection through dynamic process of molecule desorption from butterfly wings. <i>Pure and Applied Chemistry</i> , 2020 , 92, 223-232	2.1	1
5	Hydrogen evolution from silicon nanowire surfaces <i>RSC Advances</i> , 2018 , 8, 41657-41662	3.7	1
4	Bioinspired Color Change through Guided Reflection. Advanced Optical Materials, 2018, 6, 1800464	8.1	0
3	Chemical Synthesis of Nanoscale Heterogeneous Catalysts9-29		
2	In Situ Observation of Pt Icosahedral Nanoparticles Transformation into FCC Single Crystal. <i>Microscopy and Microanalysis</i> , 2016 , 22, 766-767	0.5	
1	Combined In Situ and Ex Situ Study on Synthesis of Nanostructured Catalyst in Solid State. Microscopy and Microanalysis, 2018, 24, 288-289	0.5	