Mesfin Mergia Mekonnen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4106899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends of extreme air temperature and precipitation and their impact on corn and soybean yields in Nebraska, USA. Theoretical and Applied Climatology, 2022, 147, 1379-1399.	1.3	15
2	Reply to "Letter to the editor of Pfister et al―regarding "The scarcity-weighted water footprint provides unreliable water sustainability scoring― Science of the Total Environment, 2022, 825, 154750.	3.9	0
3	Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. Journal of Hydrology, 2022, 608, 127674.	2.3	9
4	Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries. Water Research, 2022, 221, 118803.	5.3	14
5	The scarcity-weighted water footprint provides unreliable water sustainability scoring. Science of the Total Environment, 2021, 756, 143992.	3.9	43
6	Use of Multiple Environment Variety Trials Data to Simulate Maize Yields in the Ogallala Aquifer Region: A Two Model Approach. Journal of the American Water Resources Association, 2021, 57, 281-295.	1.0	4
7	An application of GRACE mission datasets for streamflow and baseflow estimation in the Conterminous United States basins. Journal of Hydrology, 2021, 601, 126622.	2.3	9
8	Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 2020, 62, 101926.	3.6	145
9	Grid-Based Model for Estimating Evapotranspiration Rates of Heterogeneous Land Surface. Journal of Irrigation and Drainage Engineering - ASCE, 2020, 146, .	0.6	6
10	Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska. Agricultural Water Management, 2020, 228, 105924.	2.4	11
11	The Water Footprint of Global Food Production. Water (Switzerland), 2020, 12, 2696.	1.2	90
12	Energy, carbon and water footprints on agricultural machinery. Biosystems Engineering, 2020, 198, 304-322.	1.9	35
13	The Water Footprint of Primary Cow–Calf Production: A Revised Bottom-Up Approach Applied on Different Breeds of Beef Cattle. Water (Switzerland), 2020, 12, 2325.	1.2	8
14	Blue water footprint linked to national consumption and international trade is unsustainable. Nature Food, 2020, 1, 792-800.	6.2	50
15	Burning Water, Overview of the Contribution of Arjen Hoekstra to the Water Energy Nexus. Water (Switzerland), 2020, 12, 2844.	1.2	4
16	Water productivity benchmarks: The case of maize and soybean in Nebraska. Agricultural Water Management, 2020, 234, 106122.	2.4	24
17	Sustainability of the blue water footprint of crops. Advances in Water Resources, 2020, 143, 103679.	1.7	66
18	Water scarcity and fish imperilment driven by beef production. Nature Sustainability, 2020, 3, 319-328.	11.5	73

#	Article	IF	CITATIONS
19	Treenuts and groundnuts in the EAT-Lancet reference diet: Concerns regarding sustainable water use. Global Food Security, 2020, 24, 100357.	4.0	40
20	Anthropogenic Nitrogen Loads to Freshwater: A High-Resolution Global Study. , 2020, , 303-317.		3
21	Water productivity in meat and milk production in the US from 1960 to 2016. Environment International, 2019, 132, 105084.	4.8	41
22	Adaptation opportunities for smallholder dairy farmers facing resource scarcity: Integrated livestock, water and land management. Agriculture, Ecosystems and Environment, 2019, 284, 106592.	2.5	16
23	Effects of Irrigation Management on Yield and Water Productivity of Barley Hordeum vulgare in the Upper Blue Nile Basin: Case Study in Northern Gondar. Water Conservation Science and Engineering, 2019, 4, 113-121.	0.9	4
24	Limits to the world's green water resources for food, feed, fiber, timber, and bioenergy. Proceedings of the United States of America, 2019, 116, 4893-4898.	3.3	177
25	Highâ€Resolution Water Footprints of Production of the United States. Water Resources Research, 2018, 54, 2288-2316.	1.7	84
26	Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 "Level of water stress― Science of the Total Environment, 2018, 613-614, 218-232.	3.9	223
27	Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A Highâ€Resolution Global Study. Water Resources Research, 2018, 54, 345-358.	1.7	240
28	Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil. Environmental Science & Technology, 2018, 52, 14508-14518.	4.6	63
29	The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water International, 2018, 43, 860-870.	0.4	31
30	Influence of internal variability on population exposure to hydroclimatic changes. Environmental Research Letters, 2017, 12, 044007.	2.2	22
31	Water footprint of feed required by farmed fish in China based on a Monte Carlo-supported von Bertalanffy growth model: A policy implication. Journal of Cleaner Production, 2017, 153, 41-50.	4.6	22
32	Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China. Hydrology and Earth System Sciences, 2016, 20, 4547-4559.	1.9	46
33	Anthropogenic Nitrogen and Phosphorus Emissions and Related Grey Water Footprints Caused by EU-27′s Crop Production and Consumption. Water (Switzerland), 2016, 8, 30.	1.2	31
34	Future electricity: The challenge of reducing both carbon and water footprint. Science of the Total Environment, 2016, 569-570, 1282-1288.	3.9	75
35	Imported water risk: the case of the UK. Environmental Research Letters, 2016, 11, 055002.	2.2	69
36	Consumptive water footprint and virtual water trade scenarios for China — With a focus on crop production, consumption and trade. Environment International, 2016, 94, 211-223.	4.8	86

#	Article	IF	CITATIONS
37	Meat and milk production scenarios and the associated land footprint in Kenya. Agricultural Systems, 2016, 145, 64-75.	3.2	22
38	Four billion people facing severe water scarcity. Science Advances, 2016, 2, e1500323.	4.7	3,190
39	The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Research, 2016, 94, 73-85.	5.3	162
40	Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources, 2016, 87, 29-41.	1.7	138
41	Mitigating the Risk of Extreme Water Scarcity and Dependency: The Case of Jordan. Water (Switzerland), 2015, 7, 5705-5730.	1.2	38
42	Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean. Sustainability, 2015, 7, 2086-2112.	1.6	76
43	The consumptive water footprint of electricity and heat: a global assessment. Environmental Science: Water Research and Technology, 2015, 1, 285-297.	1.2	192
44	The water footprint of Tunisia from an economic perspective. Ecological Indicators, 2015, 52, 311-319.	2.6	89
45	Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environmental Science & Technology, 2015, 49, 12860-12868.	4.6	294
46	Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Science of the Total Environment, 2015, 536, 847-857.	3.9	161
47	Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrology and Earth System Sciences, 2014, 18, 2219-2234.	1.9	120
48	Water conservation through trade: the case of Kenya. Water International, 2014, 39, 451-468.	0.4	37
49	Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators, 2014, 46, 214-223.	2.6	271
50	Sustainability of national consumption from a water resources perspective: The case study for France. Ecological Economics, 2013, 88, 133-147.	2.9	64
51	The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resources and Industry, 2013, 1-2, 25-36.	1.9	221
52	The water footprint of the EU for different diets. Ecological Indicators, 2013, 32, 1-8.	2.6	179
53	Reply to Ridoutt and Huang: From water footprint assessment to policy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	28
54	Mitigating the Water Footprint of Export Cut Flowers from the Lake Naivasha Basin, Kenya. Water Resources Management, 2012, 26, 3725-3742.	1.9	72

#	Article	IF	CITATIONS
55	The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3232-3237.	3.3	1,586
56	A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems, 2012, 15, 401-415.	1.6	843
57	The blue water footprint of electricity from hydropower. Hydrology and Earth System Sciences, 2012, 16, 179-187.	1.9	187
58	Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE, 2012, 7, e32688.	1.1	718
59	The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 2011, 15, 1577-1600.	1.9	1,481
60	A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and Earth System Sciences, 2010, 14, 1259-1276.	1.9	295
61	The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment. Ecological Economics, 2009, 69, 82-92.	2.9	129