List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/410648/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A:<br>General, 1999, 181, 355-398.                                                                                                    | 2.2  | 333       |
| 2  | <sup>31</sup> P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 2017, 117, 12475-12531.                                                             | 23.0 | 258       |
| 3  | Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO <sub>2</sub> under Solar-Light<br>Irradiation with XPS, Solid-State NMR, and DFT Calculations. Journal of the American Chemical<br>Society, 2013, 135, 1607-1616. | 6.6  | 230       |
| 4  | Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Physical Chemistry Chemical Physics, 2011, 13, 14889.                                                             | 1.3  | 204       |
| 5  | A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia:<br>Influence of promoter and sulfation treatment. Catalysis Today, 2006, 116, 111-120.                                               | 2.2  | 177       |
| 6  | Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 2016, 49, 655-663.                                                               | 7.6  | 177       |
| 7  | Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) with Zeolite Framework from Mesoporous Carbons (CMKs). Chemistry of Materials, 2004, 16, 3168-3175.                                                                   | 3.2  | 175       |
| 8  | Discernment and Quantification of Internal and External Acid Sites on Zeolites. Journal of Physical Chemistry B, 2002, 106, 4462-4469.                                                                                                  | 1.2  | 164       |
| 9  | Boron Environments in B-Doped and (B, N)-Codoped TiO <sub>2</sub> Photocatalysts: A Combined Solid-State NMR and Theoretical Calculation Study. Journal of Physical Chemistry C, 2011, 115, 2709-2719.                                  | 1.5  | 164       |
| 10 | Palladium Nanoparticle Incorporated Porous Activated Carbon: Electrochemical Detection of Toxic<br>Metal Ions. ACS Applied Materials & Interfaces, 2016, 8, 1319-1326.                                                                  | 4.0  | 164       |
| 11 | Theoretical Predictions of <sup>31</sup> P NMR Chemical Shift Threshold of Trimethylphosphine<br>Oxide Absorbed on Solid Acid Catalysts. Journal of Physical Chemistry B, 2008, 112, 4496-4505.                                         | 1.2  | 143       |
| 12 | Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon<br>Mesoporous Material for Applications in Direct Methanol Fuel Cell. Chemistry of Materials, 2008, 20,<br>1622-1628.                 | 3.2  | 136       |
| 13 | Stability Enhancement of H-Mordenite in Dimethyl Ether Carbonylation to Methyl Acetate by Pre-adsorption of Pyridine. Chinese Journal of Catalysis, 2010, 31, 729-738.                                                                  | 6.9  | 121       |
| 14 | Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes<br>and Sensitive Detection of Hg(II) Ions. ACS Applied Materials & Interfaces, 2015, 7, 24810-24821.                                 | 4.0  | 120       |
| 15 | Origin and Structural Characteristics of Tri-coordinated Extra-framework Aluminum Species in Dealuminated Zeolites. Journal of the American Chemical Society, 2018, 140, 10764-10774.                                                   | 6.6  | 113       |
| 16 | Biomass-Derived Activated Carbon Supported Fe <sub>3</sub> O <sub>4</sub> Nanoparticles as<br>Recyclable Catalysts for Reduction of Nitroarenes. ACS Sustainable Chemistry and Engineering, 2016, 4,<br>6772-6782.                      | 3.2  | 108       |
| 17 | Counterion Effect in Acid Synthesis of Mesoporous Silica Materials. Journal of Physical Chemistry B, 2000, 104, 7885-7894.                                                                                                              | 1.2  | 105       |
| 18 | Probing the Spatial Proximities among Acid Sites in Dealuminated H-Y Zeolite by Solid-State NMR<br>Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 14486-14494.                                                               | 1.5  | 105       |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Acidic Strengths of BrÃ,nsted and Lewis Acid Sites in Solid Acids Scaled by <sup>31</sup> P NMR<br>Chemical Shifts of Adsorbed Trimethylphosphine. Journal of Physical Chemistry C, 2011, 115, 7660-7667.                              | 1.5 | 104       |
| 20 | Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons. Analytical Methods, 2014, 6, 5274.                                                                                                              | 1.3 | 101       |
| 21 | Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons.<br>Chemical Communications, 2006, , 3435.                                                                                               | 2.2 | 99        |
| 22 | Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by<br>pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 2009, 19,<br>5985.                     | 6.7 | 96        |
| 23 | <sup>31</sup> P Chemical Shift of Adsorbed Trialkylphosphine Oxides for Acidity Characterization of<br>Solid Acids Catalysts. Journal of Physical Chemistry A, 2008, 112, 7349-7356.                                                   | 1.1 | 92        |
| 24 | Functionalized Silica Matrices and Palladium: A Versatile Heterogeneous Catalyst for Suzuki, Heck,<br>and Sonogashira Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 6357-6376.                                        | 3.2 | 87        |
| 25 | Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. Journal of Materials Chemistry A, 2014, 2, 16015-16022.                                                              | 5.2 | 79        |
| 26 | Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium. ACS Sustainable Chemistry and Engineering, 2017, 5, 5302-5312.                                         | 3.2 | 79        |
| 27 | Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Physical Chemistry Chemical Physics, 2016, 18, 16466-16475.                                                               | 1.3 | 78        |
| 28 | Highly Stable Amine-modified Mesoporous Silica Materials for Efficient CO2 Capture. Topics in Catalysis, 2010, 53, 210-217.                                                                                                            | 1.3 | 76        |
| 29 | Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction. Journal of Materials Chemistry, 2011, 21, 12489. | 6.7 | 70        |
| 30 | Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.<br>Scientific Reports, 2016, 6, 24128.                                                                                                 | 1.6 | 66        |
| 31 | Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 2013, 55-56, 12-27.                                                                 | 1.5 | 62        |
| 32 | <sup>19</sup> F Chemical Shift of Crystalline Metal Fluorides: Theoretical Predictions Based on<br>Periodic Structure Models. Journal of Physical Chemistry C, 2009, 113, 15018-15023.                                                 | 1.5 | 61        |
| 33 | Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. Sensors and Actuators B: Chemical, 2015, 221, 1384-1390.                                               | 4.0 | 60        |
| 34 | On the Regeneration of Coked H-ZSM-5 Catalysts. Journal of Catalysis, 1998, 174, 210-218.                                                                                                                                              | 3.1 | 59        |
| 35 | Effects of surface modification on coking, deactivation and para-selectivity of H-ZSM-5 zeolites during ethylbenzene disproportionation. Journal of Molecular Catalysis A, 2002, 181, 41-55.                                           | 4.8 | 59        |
| 36 | NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors. Electrochimica Acta, 2017, 247, 288-295.                                                                                                              | 2.6 | 59        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Carbon aerogel supported palladium-ruthenium nanoparticles for electrochemical sensing and catalytic reduction of food dye. Sensors and Actuators B: Chemical, 2018, 257, 48-59.                                        | 4.0 | 59        |
| 38 | Distribution of cations in lanthanum-exchanged NaY zeolites. Journal of the Chemical Society, Faraday<br>Transactions, 1991, 87, 2855.                                                                                  | 1.7 | 58        |
| 39 | Efficient and reusable polyoxometalate-based sulfonated ionic liquid catalysts for palmitic acid esterification to biodiesel. Chemical Engineering Science, 2013, 104, 64-72.                                           | 1.9 | 58        |
| 40 | Syntheses of novel halogen-free BrÃ,nsted–Lewis acidic ionic liquid catalysts and their applications<br>for synthesis of methyl caprylate. Green Chemistry, 2015, 17, 499-508.                                          | 4.6 | 58        |
| 41 | Combined Solid-State NMR and Theoretical Calculation Studies of BrÃ,nsted Acid Properties in<br>Anhydrous 12-Molybdophosphoric Acid. Journal of Physical Chemistry C, 2010, 114, 15464-15472.                           | 1.5 | 57        |
| 42 | Heteropolyacid-based ionic liquids as efficient homogeneous catalysts for acetylation of glycerol.<br>Journal of Catalysis, 2014, 320, 42-51.                                                                           | 3.1 | 57        |
| 43 | Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts.<br>Nature Protocols, 2020, 15, 3527-3555.                                                                      | 5.5 | 54        |
| 44 | Electrochemical activity and durability of platinum nanoparticles supported on ordered mesoporous<br>carbons for oxygen reduction reaction. International Journal of Hydrogen Energy, 2010, 35, 8149-8154.              | 3.8 | 53        |
| 45 | Highly stable ruthenium nanoparticles on 3D mesoporous carbon: an excellent opportunity for reduction reactions. Journal of Materials Chemistry A, 2015, 3, 23448-23457.                                                | 5.2 | 52        |
| 46 | Incorporation of C60in Layered Double Hydroxide. Journal of the American Chemical Society, 1996, 118, 4411-4418.                                                                                                        | 6.6 | 51        |
| 47 | Porous carbon-modified electrodes as highly selective and sensitive sensors for detection of dopamine. Analyst, The, 2014, 139, 4994.                                                                                   | 1.7 | 51        |
| 48 | Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient<br>catalysts for the reduction of aromatic nitro compounds. Journal of Colloid and Interface Science,<br>2017, 506, 271-282. | 5.0 | 51        |
| 49 | Ruthenium Nanoparticles Decorated Tungsten Oxide as a Bifunctional Catalyst for Electrocatalytic and Catalytic Applications. ACS Applied Materials & Interfaces, 2017, 9, 31794-31805.                                  | 4.0 | 50        |
| 50 | Functional Porous Carbon/Nickel Oxide Nanocomposites as Binderâ€Free Electrodes for<br>Supercapacitors. Chemistry - A European Journal, 2015, 21, 8200-8206.                                                            | 1.7 | 48        |
| 51 | Selectivity improvement in xylene isomerization. Microporous and Mesoporous Materials, 2004, 72, 81-89.                                                                                                                 | 2.2 | 47        |
| 52 | A direct surface silyl modification of acid-synthesized mesoporous silica. New Journal of Chemistry, 2000, 24, 253-255.                                                                                                 | 1.4 | 46        |
| 53 | Improvement of coke-induced selectivation of H-ZSM-5 during xylene isomerization. Microporous and Mesoporous Materials, 2001, 47, 67-77.                                                                                | 2.2 | 46        |
| 54 | Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale, 2017, 9, 6486-6496.                                          | 2.8 | 46        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Metal zeolites for transalkylation of toluene and heavy aromatics. Catalysis Today, 2002, 73, 39-47.                                                                                                          | 2.2 | 45        |
| 56 | Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors.<br>Scientific Reports, 2016, 6, 19949.                                                                       | 1.6 | 45        |
| 57 | Amino acid-functionalized heteropolyacids as efficient and recyclable catalysts for esterification of palmitic acid to biodiesel. Fuel, 2016, 165, 115-122.                                                   | 3.4 | 45        |
| 58 | Effect of Cation Substitution on the Adsorption of Xenon on Zeolite NaY and on the Xenon-129<br>Chemical Shifts. The Journal of Physical Chemistry, 1994, 98, 4393-4401.                                      | 2.9 | 44        |
| 59 | Hollow spheres of MCM-41 aluminosilicate with pinholes. Chemical Communications, 2001, , 1970-1971.                                                                                                           | 2.2 | 44        |
| 60 | The effect of alkan-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. Journal of Materials Chemistry, 1999, 9, 1197-1201.                                               | 6.7 | 43        |
| 61 | Enhanced para-Selectivity by Selective Coking during Toluene Disproportionation over H–ZSM-5<br>Zeolite. Journal of Catalysis, 1999, 185, 33-42.                                                              | 3.1 | 42        |
| 62 | New Insights into Kegginâ€Type 12â€Tungstophosphoric Acid from <sup>31</sup> P MAS NMR Analysis of<br>Absorbed Trimethylphosphine Oxide and DFT Calculations. Chemistry - an Asian Journal, 2011, 6, 137-148. | 1.7 | 42        |
| 63 | Excitations in Incommensurate Biphenyl: Proton Spin-Lattice Relaxation. Physical Review Letters, 1985, 54, 1287-1290.                                                                                         | 2.9 | 39        |
| 64 | Cajeput tree bark derived activated carbon for the practical electrochemical detection of vanillin.<br>New Journal of Chemistry, 2015, 39, 9109-9115.                                                         | 1.4 | 39        |
| 65 | Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite: Insights from theoretical calculations. Microporous and Mesoporous Materials, 2009, 121, 158-165.                                | 2.2 | 38        |
| 66 | Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction. Applied Energy, 2012, 100, 66-74.                                 | 5.1 | 37        |
| 67 | Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 20030-20037.                                     | 5.2 | 37        |
| 68 | Heteropolyacid-based ionic liquids as effective catalysts for the synthesis of benzaldehyde glycol<br>acetal. Applied Catalysis A: General, 2014, 485, 149-156.                                               | 2.2 | 37        |
| 69 | Enhancement of BrÃ,nsted acidity in zeolitic catalysts due to an intermolecular solvent effect in confined micropores. Chemical Communications, 2012, 48, 6936.                                               | 2.2 | 35        |
| 70 | From One to Two: Acidic Proton Spatial Networks in Porous Zeolite Materials. Chemistry of<br>Materials, 2020, 32, 1332-1342.                                                                                  | 3.2 | 35        |
| 71 | Vapor phase Beckmann rearrangement of cyclohexanone oxime over MCM-22. Applied Catalysis A:<br>General, 2004, 267, 87-94.                                                                                     | 2.2 | 33        |
| 72 | Influence of the Al Source and Synthesis of Ordered Al-SBA-15 Hexagonal Particles with Nanostairs and Terraces. Langmuir, 2005, 21, 2078-2085.                                                                | 1.6 | 33        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Progress in development and application of solid-state NMR for solid acid catalysis. Chinese Journal of Catalysis, 2013, 34, 436-491.                                                                                                       | 6.9 | 33        |
| 74 | Porous carbon-NiO nanocomposites for amperometric detection of hydrazine and hydrogen peroxide.<br>Mikrochimica Acta, 2019, 186, 59.                                                                                                        | 2.5 | 33        |
| 75 | EPR and NMR Studies of Coke Induced Selectivation over H–ZSM-5 Zeolite during Ethylbenzene<br>Disproportionation Reaction. Journal of Catalysis, 1999, 184, 29-38.                                                                          | 3.1 | 32        |
| 76 | Acidity-activity correlation over bimetallic iron-based ZSM-5 catalysts during selective catalytic reduction of NO by NH3. Journal of Molecular Catalysis A, 2016, 423, 423-432.                                                            | 4.8 | 31        |
| 77 | Roles of Carrier Gases on Deactivation and Coking in Zeolite Beta during Cumene Disproportionation.<br>Journal of Catalysis, 1996, 163, 436-446.                                                                                            | 3.1 | 30        |
| 78 | N.m.r. investigation of benzene adsorption on a dehydrated NaY zeolite. Zeolites, 1992, 12, 86-94.                                                                                                                                          | 0.9 | 29        |
| 79 | <sup>13</sup> C shielding tensors of crystalline amino acids and peptides: Theoretical predictions based on periodic structure models. Journal of Computational Chemistry, 2009, 30, 222-235.                                               | 1.5 | 29        |
| 80 | Spectral editing based on selective excitation and Lee-Goldburg cross-polarization under magic angle spinning. Solid State Nuclear Magnetic Resonance, 2006, 29, 272-277.                                                                   | 1.5 | 28        |
| 81 | Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins:<br>Effects of pore architecture and surface modification method of the supports. Microporous and<br>Mesoporous Materials, 2011, 143, 426-434. | 2.2 | 28        |
| 82 | EPR and 129Xe NMR Studies of Copper-Exchanged NaY Zeolites. The Journal of Physical Chemistry, 1995, 99, 8277-8282.                                                                                                                         | 2.9 | 26        |
| 83 | Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy. Catalysis Today, 2004, 97, 25-34.                                                                                                                               | 2.2 | 26        |
| 84 | Ordered mesoporous carbon supported bifunctional PtM (M = Ru, Fe, Mo) electrocatalysts for a fuel<br>cell anode. Chinese Journal of Catalysis, 2016, 37, 43-53.                                                                             | 6.9 | 26        |
| 85 | Capture of carbon dioxide by polyamine-immobilized mesostructured silica: A solid-state NMR study.<br>Microporous and Mesoporous Materials, 2017, 238, 2-13.                                                                                | 2.2 | 26        |
| 86 | Solâ€Gel Synthesis of Carbonâ€Coated LaCoO <sub>3</sub> for Effective Electrocatalytic Oxidation of Salicylic Acid. ChemElectroChem, 2017, 4, 935-940.                                                                                      | 1.7 | 26        |
| 87 | Combined translational-rotational jumps in solidî±-CO. Physical Review B, 1984, 30, 24-31.                                                                                                                                                  | 1.1 | 25        |
| 88 | 39 Qualitative and quantitative determination of acid sites on solid acid catalysts. Studies in Surface<br>Science and Catalysis, 2003, , 205-209.                                                                                          | 1.5 | 25        |
| 89 | Transesterification of soybean oil to biodiesel by tin-based BrÃ,nsted-Lewis acidic ionic liquid catalysts. Korean Journal of Chemical Engineering, 2016, 33, 2063-2072.                                                                    | 1.2 | 25        |
| 90 | Selective catalytic synthesis of glycerol monolaurate over silica gel-based sulfonic acid functionalized ionic liquid catalysts. Chemical Engineering Journal, 2019, 359, 733-745.                                                          | 6.6 | 25        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Fe2O3/SBA-15 catalyst synthesized by chemical vapor infiltration for Friedel–Crafts alkylation reaction. Microporous and Mesoporous Materials, 2009, 123, 306-313.                                                                 | 2.2 | 24        |
| 92  | Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3 and CO2. Chemical Engineering Journal, 2017, 312, 118-125.                                                                         | 6.6 | 24        |
| 93  | The Synthesis and Application of the Mesoporous Molecular Sieves MCMâ€41 — A Review. Journal of the Chinese Chemical Society, 1999, 46, 495-507.                                                                                   | 0.8 | 23        |
| 94  | Hydrocracking in Al-MCM-41: diffusion effect. Microporous and Mesoporous Materials, 2003, 66, 209-218.                                                                                                                             | 2.2 | 23        |
| 95  | Kinetics of toluene disproportionation over fresh and coked H-mordenite. Catalysis Today, 2004, 97, 297-302.                                                                                                                       | 2.2 | 23        |
| 96  | Hyperpolarized 129Xe NMR investigation of multifunctional organic/inorganic hybrid mesoporous silica materials. Physical Chemistry Chemical Physics, 2005, 7, 3080.                                                                | 1.3 | 23        |
| 97  | Transition-metal incorporated heteropolyacid-ionic liquid composite catalysts with tunable<br>BrĂ,nsted/Lewis acidity for acetalization of benzaldehyde with ethylene glycol. Applied Catalysis A:<br>General, 2017, 543, 115-124. | 2.2 | 23        |
| 98  | Molecular rotations in CO/N2/Ar quadrupole glass: Dielectric study. Solid State Communications, 1984, 49, 177-182.                                                                                                                 | 0.9 | 21        |
| 99  | Metal Supported Zeolite for Heavy Aromatics Transalkylation Process. Catalysis Surveys From Asia, 2009, 13, 94-103.                                                                                                                | 1.0 | 21        |
| 100 | Acidity Characterization of Solid Acid Catalysts by Solid-State 31P NMR of Adsorbed<br>Phosphorus-Containing Probe Molecules. Annual Reports on NMR Spectroscopy, 2014, 81, 47-108.                                                | 0.7 | 20        |
| 101 | Roles of Amine Additives and Gel Aging on the Synthesis of AlPO4 Molecular Sieves. Chemistry of<br>Materials, 1994, 6, 633-635.                                                                                                    | 3.2 | 19        |
| 102 | Effects of binder, coking and regeneration on acid properties of H-mordenite during TDP reaction.<br>Research on Chemical Intermediates, 2003, 29, 761-772.                                                                        | 1.3 | 19        |
| 103 | Enantioselective addition of diethylzinc to benzaldehyde over mesoporous SBA-15 functionalized with chiral proline derivatives. Applied Catalysis A: General, 2009, 359, 96-107.                                                   | 2.2 | 19        |
| 104 | Silver Nanoparticles Modified Graphitic Carbon Nitride Nanosheets as a Significant Bifunctional<br>Material for Practical Applications. ChemistrySelect, 2017, 2, 1398-1408.                                                       | 0.7 | 19        |
| 105 | Acidity and alkylation activity of 12-tungstophosphoric acid supported on ionic liquid-functionalized SBA-15. Catalysis Today, 2019, 327, 10-18.                                                                                   | 2.2 | 19        |
| 106 | Post-synthesis treatment of acid-made mesoporous silica materials by ammonia hydrothermal process.<br>Microporous and Mesoporous Materials, 2001, 44-45, 129-137.                                                                  | 2.2 | 18        |
| 107 | High loading of C60 in nanochannels of mesoporous MCM-41 materials. Microporous and Mesoporous Materials, 2003, 57, 199-209.                                                                                                       | 2.2 | 17        |
| 108 | Chirality inversion in enantioselective hydrogenation of isophorone over Pd/MgO catalysts in the presence of (S)-proline: Effect of Pd particle size. Journal of Molecular Catalysis A, 2009, 304, 88-94.                          | 4.8 | 17        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Pulsed Transient Nutation Experiments of the Photo-Excited Triplet State. Journal of Magnetic<br>Resonance Series A, 1995, 117, 9-15.                                                                                                               | 1.6 | 16        |
| 110 | Acidity and Catalytic Behaviors of Ordered Mesoporous Aluminosilicate Materials Containing Zeolite<br>Building Units. Catalysis Letters, 2006, 108, 173-178.                                                                                        | 1.4 | 16        |
| 111 | Fabrication of CNTs with controlled diameters and their applications as electrocatalyst supports for DMFC. Diamond and Related Materials, 2011, 20, 343-350.                                                                                        | 1.8 | 16        |
| 112 | Solid-state synthesis of mesoporous MFI zeolite from self-bonded silica pellets. Catalysis Today, 2013, 204, 30-37.                                                                                                                                 | 2.2 | 16        |
| 113 | Coking and Deactivation of Hâ€ZSMâ€5 Zeolites during Ethylbenzene Disproportionation: I. Formation and Location of Coke. Journal of the Chinese Chemical Society, 1996, 43, 305-313.                                                                | 0.8 | 15        |
| 114 | Probing the Alkyl Ligands on Silylated Mesoporous MCM-41 Using Hyperpolarized129Xe NMR<br>Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 681-684.                                                                                        | 1.2 | 15        |
| 115 | Effects of Lanthanum Incorporation on Stability, Acidity and Catalytic Performance of Y Zeolites.<br>Catalysis Letters, 2021, 151, 698-712.                                                                                                         | 1.4 | 15        |
| 116 | Acidity characterization of MCM-41 materials using solid-state NMR spectroscopy. Studies in Surface Science and Catalysis, 2002, 141, 453-458.                                                                                                      | 1.5 | 14        |
| 117 | On the Confinement Effect During Catalytic Reaction Over Al-MCM-41. Topics in Catalysis, 2009, 52, 2-11.                                                                                                                                            | 1.3 | 14        |
| 118 | Highly stable aluminosilicates with a dual pore system: Simultaneous formation of meso- and<br>microporosities with zeolitic BEA building units. Microporous and Mesoporous Materials, 2010, 133,<br>82-90.                                         | 2.2 | 14        |
| 119 | Calcium-Incorporated Mesoporous Aluminosilicates: Synthesis, Characterization, and Applications to<br>the Condensation of Long-Chain Fatty Acid with Long-Chain Amine and Alcohol. Industrial &<br>Engineering Chemistry Research, 2010, 49, 65-71. | 1.8 | 14        |
| 120 | Regioselectivity of carbonium ion transition states in zeolites. Catalysis Today, 2011, 164, 40-45.                                                                                                                                                 | 2.2 | 14        |
| 121 | Template-assisted synthesis of mesoporous tubular carbon nanostructure by chemical vapor<br>infiltration method. Thin Solid Films, 2006, 498, 193-197.                                                                                              | 0.8 | 13        |
| 122 | Capturing the Local Adsorption Structures of Carbon Dioxide in Polyamine-Impregnated Mesoporous Silica Adsorbents. Journal of Physical Chemistry Letters, 2014, 5, 3183-3187.                                                                       | 2.1 | 13        |
| 123 | Novel Keggin-type H 4 PVMo 11 O 40 -based ionic liquid catalysts for n -caprylic acid esterification.<br>Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 203-209.                                                                  | 2.7 | 13        |
| 124 | NMR in high-pressure phases of solidNH3andND3. Physical Review B, 1986, 33, 14-21.                                                                                                                                                                  | 1.1 | 12        |
| 125 | 129Xe Nuclear magnetic resonance study on a solid-state defect in HZSM-5 zeolite. Microporous<br>Materials, 1995, 4, 59-64.                                                                                                                         | 1.6 | 12        |
| 126 | Adsorption of lysozyme on spherical mesoporous carbons (SMCs) replicated from colloidal silica arrays by chemical vapor deposition. Journal of Colloid and Interface Science, 2009, 339, 439-445.                                                   | 5.0 | 12        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Carbon–boron core–shell microspheres for the oxygen reduction reaction. Journal of Materials<br>Chemistry A, 2016, 4, 12987-12994.                                                                   | 5.2 | 12        |
| 128 | Ionic Liquid–Silicotungstic Acid Composites as Efficient and Recyclable Catalysts for the Selective<br>Esterification of Glycerol with Lauric Acid to Monolaurin. ChemCatChem, 2017, 9, 2727-2738.   | 1.8 | 12        |
| 129 | Generation of the precursor species in the synthesis of AlPO4 molecular sieves. Microporous<br>Materials, 1995, 4, 391-394.                                                                          | 1.6 | 9         |
| 130 | Heteronuclear dipolar recoupling of half-integer quadrupole nuclei under fast magic angle spinning.<br>Solid State Nuclear Magnetic Resonance, 2009, 36, 110-117.                                    | 1.5 | 9         |
| 131 | Effect of pore size on the adsorption of xenon on mesoporous MCM-41 and on the 129Xe NMR chemical shifts: a variable temperature study. Studies in Surface Science and Catalysis, 2000, , 517-524.   | 1.5 | 8         |
| 132 | Effect of Temperature Gradient Direction in the Catalyst Nanoparticle on CNTs Growth Mode.<br>Nanoscale Research Letters, 2010, 5, 1393-1402.                                                        | 3.1 | 8         |
| 133 | Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications. Nano Express, 2020, 1, 010036.                                | 1.2 | 8         |
| 134 | Heterogeneous amino acid-based tungstophosphoric acids as efficient and recyclable catalysts for selective oxidation of benzyl alcohol. Korean Journal of Chemical Engineering, 2017, 34, 1914-1923. | 1.2 | 7         |
| 135 | Role of acidity over rare earth metal ion-exchanged heteropoly tungstates during oxidation of alcohols. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 23-31.                      | 2.7 | 7         |
| 136 | Highly Active Silver ion-Exchanged Silicotungstic Acid Catalysts for Selective Esterification of<br>Glycerol with Lauric Acid. Catalysis Letters, 2020, 150, 3584-3597.                              | 1.4 | 7         |
| 137 | Gel Chemistry in Synthesis of AIPO <sub>4</sub> Molecular Sieves. Journal of the Chinese Chemical Society, 1995, 42, 537-542.                                                                        | 0.8 | 6         |
| 138 | Roles of organic acids during exectrooxidation reaction over Pt-supported carbon electrodes in direct methanol fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12984-12990.          | 3.8 | 6         |
| 139 | Study on optimum base-treatment of mordenite for catalytic alkylbenzene transalkylation. Catalysis<br>Today, 2016, 259, 423-429.                                                                     | 2.2 | 6         |
| 140 | Selective mono-alkylbenzene disproportionation over silylated MFI zeolite. Catalysis Today, 2022, 388-389, 134-140.                                                                                  | 2.2 | 5         |
| 141 | Zeolite ZSM-5 Supported Bimetallic Fe-Based Catalysts for Selective Catalytic Reduction of NO: Effects of Acidity and Metal Loading. Advanced Porous Materials, 2016, 4, 189-199.                    | 0.3 | 5         |
| 142 | Acidity of Solid and Liquid Acids Probed by P-31 NMR Chemical Shifts of Phosphine Oxides. Journal of<br>Analytical Science and Technology, 2011, 2, A155-A158.                                       | 1.0 | 5         |
| 143 | Variable temperature 129Xe NMR studies of xenon adsorbed on mesoporous MCM-41 molecular sieves.<br>Studies in Surface Science and Catalysis, 1998, , 543-550.                                        | 1.5 | 4         |
| 144 | Effects of Si/Al Ratio and Pore Size on Cracking Reaction over Mesoporous MCM-41. Studies in Surface Science and Catalysis, 2002, , 537-542.                                                         | 1.5 | 4         |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Acidity characterization of H-ZSM-5 catalysts modified by pre-coking and silylation. Studies in Surface Science and Catalysis, 2004, 154, 2269-2274.                                                                                                 | 1.5 | 4         |
| 146 | Synergism of acidic zeolite and Pt/zeolite in aromatics transalkylation. Studies in Surface Science and Catalysis, 2008, , 1183-1186.                                                                                                                | 1.5 | 4         |
| 147 | Highly Stable Mesoporous Aluminosilicates with a Dual Pore System: Simultaneous Formation of Mesophase with Zeolitic Building Units. Chemistry Letters, 2009, 38, 548-549.                                                                           | 0.7 | 4         |
| 148 | Distribution of Europium Ions in Ionâ€Exchanged NaX and NaY Zeolites. Journal of the Chinese Chemical Society, 1994, 41, 53-58.                                                                                                                      | 0.8 | 3         |
| 149 | Characterization of Nanoporous Structures of Polyphenylene Oxide Derived Carbon Membranes by<br>Means of <sup>129</sup> Xe NMR. Journal of Nanoscience and Nanotechnology, 2007, 7, 3932-3937.                                                       | 0.9 | 3         |
| 150 | Hollowed carbon capsule based Pt–Fe/carbon electrodecatalysts prepared by chemical vapor<br>infiltration method. Diamond and Related Materials, 2008, 17, 1541-1544.                                                                                 | 1.8 | 3         |
| 151 | NMR Studies of Benzene Adsorbed on Synthetic Faujasite-Type Zeolites. Collection of Czechoslovak<br>Chemical Communications, 1992, 57, 718-732.                                                                                                      | 1.0 | 3         |
| 152 | Pore Engineering of Zeolites and Their Perspective Applications in Aromatics Conversion. Current<br>Organic Chemistry, 2014, 18, 1323-1334.                                                                                                          | 0.9 | 3         |
| 153 | Homogeneous Adsorption of Benzene on NaX and NaY Zeolites. ACS Symposium Series, 1993, , 272-288.                                                                                                                                                    | 0.5 | 2         |
| 154 | Dynamic Nuclear Polarization in Pulsed ENDOR Experiments. Journal of Magnetic Resonance, 1999, 137, 25-28.                                                                                                                                           | 1.2 | 2         |
| 155 | Roles of pore size and Al content on the catalytic performance of Al-MCM- 41 during hydrocracking reaction. Studies in Surface Science and Catalysis, 2003, , 681-684.                                                                               | 1.5 | 2         |
| 156 | Acidity and sorption properties of nano-sized mesoporous aluminosilicate materials. Studies in Surface Science and Catalysis, 2005, 156, 657-662.                                                                                                    | 1.5 | 2         |
| 157 | Acid-base catalysis advanced sciences and spreading applications to solutions of environmental,<br>resources and energy issues: ABC-7, 7th International Symposium on Acid–Base Catalysis, Tokyo, May<br>12–15, 2013. Catalysis Today, 2014, 226, 1. | 2.2 | 2         |
| 158 | Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed<br>phosphorus-containing probe molecules: An update. Annual Reports on NMR Spectroscopy, 2020, ,<br>65-149.                                                      | 0.7 | 2         |
| 159 | Replication of Bimodal Porous Carbon Material from Mesoporous/Microporous Aluminosilicate<br>Composite. Nanoscience and Nanotechnology Letters, 2011, 3, 788-793.                                                                                    | 0.4 | 2         |
| 160 | Probing the Surface Organic Moieties on Organic-functionalized Mesoporous Materials Using<br>Đуperpoiarized 129Xe NMR Spectroscopy. Studies in Surface Science and Catalysis, 2007, 172, 349-352.                                                    | 1.5 | 1         |
| 161 | Fabrication of highly dispersed Pt nanoparticles in tubular carbon mesoporous materials for hydrogen energy applications. Studies in Surface Science and Catalysis, 2007, 165, 853-856.                                                              | 1.5 | 0         |
| 162 | Synthesis of uniform carbon nanotubes by chemical vapor infiltration method using SBA-15 mesoporous silica as template. Studies in Surface Science and Catalysis, 2007, 165, 409-412.                                                                | 1.5 | 0         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Synthesis of a Homogeneous Propyl Sulfobetaine-Tungstophosphoric Acid Catalyst with Tunable<br>Acidic Strength and Its Application to Waste Wood Hydrolysis. Catalysis Letters, 2018, 148, 3269-3279. | 1.4 | 0         |