Laurent Evanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/410584/publications.pdf Version: 2024-02-01

LAUDENT EVANNO

#	Article	IF	CITATIONS
1	The chemistry of mavacurane alkaloids: a rich source of bis-indole alkaloids. Natural Product Reports, 2021, 38, 1852-1886.	10.3	14
2	Bioinspired Early Divergent Oxidative Cyclizations toward Pleiocarpamine, Talbotine, and Strictamine. Organic Letters, 2021, 23, 1355-1360.	4.6	9
3	Biosynthetically Relevant Reactivity of Polyneuridine Aldehyde. European Journal of Organic Chemistry, 2020, 2020, 6989-6991.	2.4	3
4	Bioinspired Divergent Oxidative Cyclizations of Geissoschizine: Total Synthesis of (–)â€17â€norâ€Excelsinidine, (+)â€16â€ <i>epi</i> â€Pleiocarpamine, (+)â€16â€Hydroxymethylâ€Pleiocarpam (+)â€Taberdivarine H. European Journal of Organic Chemistry, 2020, 2020, 6340-6351.	ine <i>a</i> nd	15
5	Apoprunellelactone (APL), an antiprotozoal lactone from the stem barks oflsolona cooperiHutch. & Dalziel (Annonaceae). Natural Product Research, 2020, 35, 1-8.	1.8	1
6	Biosynthetic Routes to Natural Isocyanides. European Journal of Organic Chemistry, 2020, 2020, 1919-1929.	2.4	22
7	Synthesis of 12â€×i>epiâ€Protopanaxadiol and Formal Synthesis of Ginsenoside Chikusetsusaponinâ€LT ₈ . European Journal of Organic Chemistry, 2019, 2019, 5970-5973.	2.4	7
8	Natural products targeting strategies involving molecular networking: different manners, one goal. Natural Product Reports, 2019, 36, 960-980.	10.3	156
9	Chemical Insights into the Anchinopeptolide Series. European Journal of Organic Chemistry, 2019, 2019, 5515-5518.	2.4	6
10	Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for Enantioselective Total Synthesis of Mavacuran Alkaloids. Angewandte Chemie, 2019, 131, 9966-9970.	2.0	10
11	Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for Enantioselective Total Synthesis of Mavacuran Alkaloids. Angewandte Chemie - International Edition, 2019, 58, 9861-9865.	13.8	25
12	Collected mass spectrometry data on monoterpene indole alkaloids from natural product chemistry research. Scientific Data, 2019, 6, 15.	5.3	37
13	Insights into the Biosynthesis of Cyclic Guanidine Alkaloids from Crambeidae Marine Sponges. Angewandte Chemie - International Edition, 2019, 58, 520-525.	13.8	11
14	Insights into the Biosynthesis of Cyclic Guanidine Alkaloids from Crambeidae Marine Sponges. Angewandte Chemie, 2019, 131, 530-535.	2.0	0
15	A Ringâ€Distortion Strategy from Marine Natural Product Ilimaquinone Leads to Quorum Sensing Modulators. European Journal of Organic Chemistry, 2018, 2018, 2486-2497.	2.4	11
16	Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Total Synthesis of (â^')â€17â€norâ€Excelsinidine. Angewandte Chemie - International Edition, 2018, 57, 12294-12298.	13.8	35
17	Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Total Synthesis of (â~)â€17â€norâ€Excelsinidine. Angewandte Chemie, 2018, 130, 12474-12478.	2.0	14
18	Divergent Oxidative Couplings between Indoles and 2,3-Dihydroxybenzoic Acid Derivatives for the Biomimetic Synthesis of Voacalgine A and Bipleiophylline. Synthesis, 2018, 50, e4-e4.	2.3	0

LAURENT EVANNO

#	Article	IF	CITATIONS
19	Divergent Oxidative Couplings between Indoles and 2,3-Dihydroxybenzoic Acid Derivatives for the Biomimetic Synthesis of Voacalgine A and Bipleiophylline. Synthesis, 2018, 50, 4229-4242.	2.3	20
20	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie - International Edition, 2018, 57, 11786-11791.	13.8	23
21	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie, 2018, 130, 11960-11965.	2.0	8
22	Revisiting Previously Investigated Plants: A Molecular Networking-Based Study of <i>Geissospermum laeve</i> . Journal of Natural Products, 2017, 80, 1007-1014.	3.0	45
23	Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings. Nature Chemistry, 2017, 9, 793-798.	13.6	83
24	llimaquinone and 5-epi-llimaquinone: Beyond a Simple Diastereomeric Ratio, Biosynthetic Considerations from NMR-Based Analysis. Australian Journal of Chemistry, 2017, 70, 743.	0.9	7
25	Frontispiece: An Unprecedented Blue Chromophore Found in Nature using a "Chemistry First―and Molecular Networking Approach: Discovery of Dactylocyanines A–H. Chemistry - A European Journal, 2017, 23, .	3.3	0
26	An Unprecedented Blue Chromophore Found in Nature using a "Chemistry First―and Molecular Networking Approach: Discovery of Dactylocyanines A–H. Chemistry - A European Journal, 2017, 23, 14454-14461.	3.3	25
27	Pleiokomenines A and B: Dimeric Aspidofractinine Alkaloids Tethered with a Methylene Group. Organic Letters, 2017, 19, 6180-6183.	4.6	17
28	Mimicking the Main Events of the Biosynthesis of Drimentines: Synthesis of Δ8′â€Isodrimentine A and Related Compounds. European Journal of Organic Chemistry, 2016, 2016, 2954-2958.	2.4	7
29	Preakuammicine: A Longâ€Awaited Missing Link in the Biosynthesis of Monoterpene Indole Alkaloids. European Journal of Organic Chemistry, 2016, 2016, 1494-1499.	2.4	29
30	Emergence of diversity and stereochemical outcomes in the biosynthetic pathways of cyclobutane-centered marine alkaloid dimers. Natural Product Reports, 2016, 33, 820-842.	10.3	74
31	Biotransformations versus chemical modifications: new cytotoxic analogs of marine sesquiterpene ilimaquinone. Tetrahedron Letters, 2016, 57, 4922-4925.	1.4	12
32	Polyneuridine aldehyde: structure, stability overviews and a plausible origin of flavopereirine. Tetrahedron Letters, 2016, 57, 1718-1720.	1.4	8
33	Biomimetic Assembly of Leucoridine A. European Journal of Organic Chemistry, 2015, 2015, 1894-1898.	2.4	15
34	Harnessing the Intrinsic Reactivity within the Aplysinopsin Series for the Synthesis of Intricate Dimers: Natural from Start to Finish. Synthesis, 2015, 47, 2367-2376.	2.3	9
35	Spontaneous Biomimetic Formation of (±)â€Dictazoleâ€B under Irradiation with Artificial Sunlight. Angewandte Chemie - International Edition, 2014, 53, 6419-6424.	13.8	32
36	A Unified Bioinspired "Aplysinopsin Cascade― Total Synthesis of (±)-Tubastrindole B and Related Biosynthetic Congeners. Organic Letters, 2014, 16, 4980-4983.	4.6	18

LAURENT EVANNO

#	Article	IF	CITATIONS
37	Biomimetic Threeâ€Component Assembly of the Central Core of Halichonadins K and L. European Journal of Organic Chemistry, 2013, 2013, 453-455.	2.4	11
38	Reactivity of cyclohexene epoxides toward intramolecular acid-catalyzed cyclizations for the synthesis of naturally occurring cage architectures. Comptes Rendus Chimie, 2013, 16, 304-310.	0.5	4
39	Synthesis of Naturally Occurring Cyclohexene Rings Using Stereodirected Intramolecular Diels–Alder Reactions Through Asymmetric 1,3â€Dioxane Tethering. European Journal of Organic Chemistry, 2011, 2011, 2789-2800.	2.4	31
40	Synthetic studies toward the cytotoxic norditerpene (+)-harringtonolide: setting up key-stereogenic centers of the cyclohexane ring D. Tetrahedron Letters, 2011, 52, 3447-3450.	1.4	27
41	Chemistry and biology of non-tetramic γ-hydroxy-γ-lactams and γ-alkylidene-γ-lactams from natural sources. Natural Product Reports, 2009, 26, 1044-1062.	10.3	108
42	A Highly Enantioselective Access to Tetrahydroisoquinoline and βâ€Carboline Alkaloids with Simple Noyoriâ€Type Catalysts in Aqueous Media. Chemistry - A European Journal, 2009, 15, 12963-12967.	3.3	91
43	Further Studies of the Norditerpene (+)-Harringtonolide Isolated from <i>Cephalotaxus harringtonia</i> var. <i>drupacea</i> : Absolute Configuration, Cytotoxic and Antifungal Activities. Planta Medica, 2008, 74, 870-872.	1.3	65
44	Utility of a chiral 1,3-dioxane template in stereoselective intramolecular Diels–Alder reactions. Tetrahedron Letters, 2007, 48, 2893-2896.	1.4	20
45	An enyne metathesis/Diels–Alder reaction sequence towards the synthesis of cup-shaped 5/5/6-tricyclic architectures. Tetrahedron Letters, 2007, 48, 4331-4333.	1.4	20
46	Unexpected Dehydrogenation Products in the Furan Series Arising from Ruthenium-Catalyzed 4-Oxo-1,6-enyne Metathesis ChemInform, 2005, 36, no.	0.0	0
47	Unexpected Dehydrogenation Products in the Furan Series Arising from Ruthenium atalyzed	2.1	15