
## **Regine Basseguy**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4105838/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The electrochemical potential is a key parameter for cell adhesion and proliferation on carbon surface. Bioelectrochemistry, 2022, 144, 108045.                                                                                   | 4.6  | 4         |
| 2  | Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. IScience, 2021, 24, 102162.                                                            | 4.1  | 8         |
| 3  | Design of 3D microbial anodes for microbial electrolysis cells (MEC) fuelled by domestic wastewater.<br>Part I: Multiphysics modelling. Journal of Environmental Chemical Engineering, 2021, 9, 105476.                           | 6.7  | 8         |
| 4  | Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint. Applied Energy, 2020, 257, 113938.                                                                       | 10.1 | 150       |
| 5  | Low-Cost Electrode Modification to Upgrade the Bioelectrocatalytic Oxidation of Tannery<br>Wastewater Using Acclimated Activated Sludge. Applied Sciences (Switzerland), 2019, 9, 2259.                                           | 2.5  | 5         |
| 6  | Benchmarking of Industrial Synthetic Graphite Grades, Carbon Felt, and Carbon Cloth as<br>Cost-Efficient Bioanode Materials for Domestic Wastewater Fed Microbial Electrolysis Cells.<br>Frontiers in Energy Research, 2019, 7, . | 2.3  | 12        |
| 7  | An imaging system for microbial corrosion analysis. , 2019, , .                                                                                                                                                                   |      | 7         |
| 8  | Catalysis of the hydrogen evolution reaction by hydrogen carbonate to decrease the voltage of microbial electrolysis cell fed with domestic wastewater. Electrochimica Acta, 2018, 275, 32-39.                                    | 5.2  | 24        |
| 9  | Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance. Journal of Power Sources, 2017, 356, 389-399.                                                    | 7.8  | 53        |
| 10 | Discerning different and opposite effects of hydrogenase on the corrosion of mild steel in the presence of phosphate species. Bioelectrochemistry, 2016, 111, 31-40.                                                              | 4.6  | 8         |
| 11 | Exacerbation of the mild steel corrosion process by direct electron transfer between<br>[Fe-Fe]-hydrogenase and material surface. Corrosion Science, 2016, 111, 199-211.                                                          | 6.6  | 12        |
| 12 | Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel. Bioelectrochemistry, 2016, 109, 9-23.                                                                   | 4.6  | 7         |
| 13 | Geobacter sulfurreducens: An iron reducing bacterium that can protect carbon steel against corrosion?. Corrosion Science, 2015, 94, 104-113.                                                                                      | 6.6  | 39        |
| 14 | Electrochemical characterization of microbial bioanodes formed on a collector/electrode system in a highly saline electrolyte. Bioelectrochemistry, 2015, 106, 97-104.                                                            | 4.6  | 16        |
| 15 | Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems:<br>Laboratory investigation. Bioelectrochemistry, 2014, 97, 76-88.                                                                      | 4.6  | 27        |
| 16 | Electrochemical and fractographic analysis of Microbiologically Assisted Stress Corrosion Cracking of carbon steel. Corrosion Science, 2014, 80, 60-70.                                                                           | 6.6  | 31        |
| 17 | Corrosion of low carbon steel by microorganisms from the â€~pigging' operation debris in water injection pipelines. Bioelectrochemistry, 2014, 97, 97-109.                                                                        | 4.6  | 28        |
| 18 | Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment.<br>Electrochimica Acta, 2013, 113, 390-406.                                                                                  | 5.2  | 79        |

**REGINE BASSEGUY** 

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Catalyse biotique et abiotique de la réduction des nitrates en milieu alcalin dans le contexte du<br>stockage profond des déchets radioactifs. Materiaux Et Techniques, 2013, 101, 104. | 0.9 | 5         |
| 20 | Effect of the semi-conductive properties of the passive layer on the current provided by stainless steel microbial cathodes. Electrochimica Acta, 2011, 56, 2682-2688.                  | 5.2 | 23        |
| 21 | Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode.<br>International Journal of Hydrogen Energy, 2010, 35, 8561-8568.                             | 7.1 | 89        |
| 22 | Geobacter sulfurreducens can protect 304L stainless steel against pitting in conditions of low electron acceptor concentrations. Electrochemistry Communications, 2010, 12, 724-728.    | 4.7 | 14        |
| 23 | Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC). Electrochemistry Communications, 2010, 12, 183-186.         | 4.7 | 61        |
| 24 | Role of direct microbial electron transfer in corrosion of steels. Electrochemistry Communications, 2009, 11, 568-571.                                                                  | 4.7 | 53        |
| 25 | Geobacter species enhances pit depth on 304L stainless steel in a medium lacking with electron donor.<br>Electrochemistry Communications, 2009, 11, 1476-1481.                          | 4.7 | 15        |
| 26 | Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels. Corrosion Science, 2009, 51, 2596-2604.                          | 6.6 | 48        |
| 27 | New hypotheses for hydrogenase implication in the corrosion of mild steel. Electrochimica Acta, 2008, 54, 140-147.                                                                      | 5.2 | 24        |
| 28 | DSA to grow electrochemically active biofilms of Geobacter sulfurreducens. Electrochimica Acta, 2008, 53, 3200-3209.                                                                    | 5.2 | 60        |
| 29 | Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes.<br>Electrochimica Acta, 2008, 53, 5235-5241.                                                   | 5.2 | 140       |
| 30 | Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.<br>Bioresource Technology, 2008, 99, 8887-8894.                                        | 9.6 | 84        |
| 31 | Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes.<br>Electrochimica Acta, 2008, 53, 2494-2500.                                              | 5.2 | 148       |
| 32 | Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: A new approach to the study of biocorrosion. Electrochimica Acta, 2008, 54, 60-65.              | 5.2 | 28        |
| 33 | Role of the reversible electrochemical deprotonation of phosphate species in anaerobic biocorrosion of steels. Corrosion Science, 2007, 49, 3988-4004.                                  | 6.6 | 19        |
| 34 | Classic and local analysis of corrosion behaviour of graphite and stainless steels in polluted phosphoric acid. Electrochimica Acta, 2007, 52, 2580-2587.                               | 5.2 | 59        |
| 35 | Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials.<br>Electrochimica Acta, 2007, 53, 468-473.                                                | 5.2 | 243       |
| 36 | Simple design of cast myoglobin/polyethyleneimine modified electrodes. Journal of Applied<br>Electrochemistry, 2006, 36, 835-842.                                                       | 2.9 | 4         |

**REGINE BASSEGUY** 

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electroactive cytochrome cast polyion films on graphite electrodes. Electrochimica Acta, 2006, 52,<br>979-987.                                                                                                 | 5.2 | 7         |
| 38 | Design and Modelling of a Dialysis Membrane Electrochemical Reactor (D-MER) for<br>Oxidoreductase-Catalysed Synthesis. Journal of Applied Electrochemistry, 2004, 34, 469-476.                                 | 2.9 | 1         |
| 39 | Glucose oxidase catalysed oxidation of glucose in a dialysis membrane electrochemical reactor (D-MER). Bioprocess and Biosystems Engineering, 2004, 26, 165-168.                                               | 3.4 | 7         |
| 40 | Electron transfer between hydrogenase and 316L stainless steel: identification of a<br>hydrogenase-catalyzed cathodic reaction in anaerobic mic. Journal of Electroanalytical Chemistry,<br>2004, 561, 93-102. | 3.8 | 60        |
| 41 | Hydrogenase-catalysed deposition of vivianite on mild steel. Electrochimica Acta, 2004, 49, 2097-2103.                                                                                                         | 5.2 | 8         |
| 42 | The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels.<br>Bioelectrochemistry, 2002, 56, 77-79.                                                                           | 4.6 | 32        |
| 43 | Designing membrane electrochemical reactors for oxidoreductase-catalysed synthesis.<br>Bioelectrochemistry, 2002, 55, 93-95.                                                                                   | 4.6 | 13        |
| 44 | Membrane electrochemical reactor (MER): application to NADH regeneration for ADH-catalysed synthesis. Chemical Engineering Science, 2002, 57, 4633-4642.                                                       | 3.8 | 31        |
| 45 | Surface-modified electrodes for NADH oxidation in oxidoreductase-catalysed synthesis. Journal of<br>Applied Electrochemistry, 2001, 31, 1095-1101.                                                             | 2.9 | 12        |
| 46 | Mass transfer with chemical reaction in thin-layer electrochemical reactors. AICHE Journal, 1995, 41, 1944-1954.                                                                                               | 3.6 | 10        |
| 47 | Electrochemical and surface studies of the ageing of passive layers grown on stainless steel in neutral chloride solution. Corrosion Science, 1994, 36, 171-186.                                               | 6.6 | 60        |
| 48 | Frequency dispersion of passive electrode capacitances. Electrochimica Acta, 1993, 38, 1615-1617.                                                                                                              | 5.2 | 1         |
| 49 | The resistance to localized corrosion in neutral chloride medium of an AISI 304l stainless steel implanted with nitrogen and neon ions. Corrosion Science, 1992, 33, 1121-1134.                                | 6.6 | 27        |
| 50 | Poly(pyrrole-metallotetraphenylporphyrin)-modified electrodes. Journal of Electroanalytical<br>Chemistry, 1992, 324, 325-337.                                                                                  | 3.8 | 43        |