André Moreni Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4105091/publications.pdf

Version: 2024-02-01

47 papers 1,735

394421 19 h-index 276875 41 g-index

51 all docs

51 does citations

51 times ranked

2703 citing authors

#	Article	IF	Citations
1	Development of PEG-PCL-based polymersomes through design of experiments for co-encapsulation of vemurafenib and doxorubicin as chemotherapeutic drugs. Journal of Molecular Liquids, 2022, 349, 118166.	4.9	7
2	Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. Materials Science and Engineering C, 2022, 133, 112623.	7.3	26
3	Recombinant <scp>lâ€</scp> asparaginase production using <i>Pichia pastoris</i> (<scp><i>MUT</i>^{<i>s</i>}</scp> strain): establishment of conditions for growth and induction phases. Journal of Chemical Technology and Biotechnology, 2021, 96, 283-292.	3.2	10
4	Compartmentalization of therapeutic proteins into semi-crystalline PEG-PCL polymersomes. Soft Materials, 2021, 19, 222-230.	1.7	12
5	Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomaterials Science, 2021, 9, 2183-2196.	5.4	18
6	Using coarse-grained molecular dynamics to understand the effect of ionic liquids on the aggregation of Pluronic copolymer solutions. Physical Chemistry Chemical Physics, 2021, 23, 5824-5833.	2.8	17
7	Role of model organisms and nanocompounds in human health risk assessment. Environmental Monitoring and Assessment, 2021, 193, 285.	2.7	5
8	Quality by Design Approach for the Development of Liposome Carrying Ghrelin for Intranasal Administration. Pharmaceutics, 2021, 13, 686.	4.5	14
9	Comparative Study on Lead and Copper Biosorption Using Three Bioproducts from Edible Mushrooms Residues. Journal of Fungi (Basel, Switzerland), 2021, 7, 441.	3.5	12
10	Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. International Journal of Pharmaceutics, 2021, 604, 120534.	5.2	32
11	Microbial Colorants Production in Stirred-Tank Bioreactor and Their Incorporation in an Alternative Food Packaging Biomaterial. Journal of Fungi (Basel, Switzerland), 2020, 6, 264.	3.5	14
12	Amphiphilic copolymer aqueous solutions with cholinium ionic liquids as adjuvants: New insights into determination of binodal curves and phase-separation mechanisms. Journal of Molecular Liquids, 2020, 318, 114245.	4.9	6
13	Separation and purification of curcumin using novel aqueous two-phase micellar systems composed of amphiphilic copolymer and cholinium ionic liquids. Separation and Purification Technology, 2020, 250, 117262.	7.9	23
14	Impact of Probiotics on Animal Health. , 2020, , 261-290.		1
15	Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 2. Nonionic micellar systems. Separation and Purification Technology, 2019, 210, 69-79.	7.9	8
16	Fed-Batch Production of Saccharomyces cerevisiae L-Asparaginase II by Recombinant Pichia pastoris MUTs Strain. Frontiers in Bioengineering and Biotechnology, 2019, 7, 16.	4.1	23
17	Effects of choliniumâ€based ionic liquids on Aspergillus niger lipase: Stabilizers or inhibitors. Biotechnology Progress, 2019, 35, e2838.	2.6	15
18	Bacteriocin partitioning from a clarified fermentation broth of Lactobacillus plantarum ST16Pa in aqueous two-phase systems with sodium sulfate and choline-based salts as additives. Process Biochemistry, 2018, 66, 212-221.	3.7	21

#	Article	IF	Citations
19	Application of aqueous twoâ€phase micellar system to improve extraction of adenoviral particles from cell lysate. Biotechnology and Applied Biochemistry, 2018, 65, 381-389.	3.1	6
20	A critical analysis of L-asparaginase activity quantification methodsâ€"colorimetric methods versus high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 2018, 410, 6985-6990.	3.7	20
21	Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 1. Polymer-polymer systems. Separation and Purification Technology, 2018, 206, 39-49.	7.9	22
22	Therapeutic <scp>I</scp> -asparaginase: upstream, downstream and beyond. Critical Reviews in Biotechnology, 2017, 37, 82-99.	9.0	109
23	Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy. Journal of Theoretical Biology, 2017, 416, 88-98.	1.7	6
24	A transferrin variant as the targeting ligand for polymeric nanoparticles incorporated in 3-D PLGA porous scaffolds. Materials Science and Engineering C, 2017, 73, 373-380.	7.3	17
25	Heterologous expression and purification of active Lâ€asparaginase I of <i>Saccharomyces cerevisiae</i> in <i>Escherichia coli</i> host. Biotechnology Progress, 2017, 33, 416-424.	2.6	13
26	Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 2016, 100, 2063-2072.	3.6	317
27	Nanostructures for protein drug delivery. Biomaterials Science, 2016, 4, 205-218.	5.4	97
28	Stability, purification, and applications of bromelain: A review. Biotechnology Progress, 2016, 32, 5-13.	2.6	106
29	Extraction of natural red colorants from the fermented broth of Penicillium purpurogenumusing aqueous two-phase polymer systems. Biotechnology Progress, 2015, 31, 1295-1304.	2.6	11
30	Dextran sulfate/Triton X two-phase micellar systems as an alternative first purification step for clavulanic acid. Fluid Phase Equilibria, 2015, 399, 80-86.	2.5	12
31	Poly(lactic-co-glycolic acid) matrix incorporated with nisin as a novel antimicrobial biomaterial. World Journal of Microbiology and Biotechnology, 2015, 31, 649-659.	3.6	11
32	Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Separation and Purification Technology, 2015, 156, 215-225.	7.9	30
33	Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems. Brazilian Journal of Chemical Engineering, 2014, 31, 1057-1064.	1.3	18
34	5CN05 partitioning in an aqueous two-phase system: A new approach to the solubilization of hydrophobic drugs. Process Biochemistry, 2014, 49, 1555-1561.	3.7	5
35	Aqueous Two-Phase Micellar System for Nisin Extraction in the Presence of Electrolytes. Food and Bioprocess Technology, 2013, 6, 3456-3461.	4.7	23
36	LPSâ€"protein aggregation influences protein partitioning in aqueous two-phase micellar systems. Applied Microbiology and Biotechnology, 2013, 97, 6201-6209.	3.6	17

#	Article	IF	CITATIONS
37	Behavior of Triton X-114 cloud point in the presence of inorganic electrolytes. Fluid Phase Equilibria, 2013, 360, 435-438.	2.5	51
38	Adsorption of endotoxins on Ca2+ iminodiacetic acid by metal ion affinity chromatography. Chinese Journal of Chromatography (Se Pu), 2013, 30, 1194-1202.	0.8	1
39	Evaluation of xylanases from Aspergillus niger and Trichoderma sp. on dough rheological properties. African Journal of Biotechnology, 2011, 10, 9132-9136.	0.6	5
40	Green fluorescent protein extraction and LPS removal from Escherichia coli fermentation medium using aqueous two-phase micellar system. Separation and Purification Technology, 2011, 81, 339-346.	7.9	29
41	Aqueous two-phase micellar systems in an oscillatory flow micro-reactor: study of perspectives and experimental performance. Journal of Chemical Technology and Biotechnology, 2011, 86, 1159-1165.	3.2	7
42	LPS removal from an <i>E. coli</i> fermentation broth using aqueous twoâ€phase micellar system. Biotechnology Progress, 2010, 26, 1644-1653.	2.6	29
43	Liquid–liquid extraction of biomolecules: an overview and update of the main techniques. Journal of Chemical Technology and Biotechnology, 2008, 83, 143-157.	3.2	191
44	Liquid–liquid extraction of commercial and biosynthesized nisin by aqueous two-phase micellar systems. Enzyme and Microbial Technology, 2008, 42, 107-112.	3.2	43
45	Can affinity interactions influence the partitioning of glucose-6-phosphate dehydrogenase in two-phase aqueous micellar systems?. Quimica Nova, 2008, 31, 998-1003.	0.3	14
46	Methods of endotoxin removal from biological preparations: a review. Journal of Pharmacy and Pharmaceutical Sciences, 2007, 10, 388-404.	2.1	259
47	Can aqueous two-phase micellar systems (ATPMS) be effective platforms for the encapsulation of hydrophobic drugs like curcumin as a model?. , 0, , .		O