
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4105086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. Journal of Organic Chemistry, 1991, 56, 2656-2665.	3.2	920
2	Biocatalysis in ionic liquids – advantages beyond green technology. Current Opinion in Biotechnology, 2003, 14, 432-437.	6.6	625
3	Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio- and Regioselective Acylations. Journal of Organic Chemistry, 2001, 66, 8395-8401.	3.2	568
4	Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to Form New Bonds and Follow New Pathways. Angewandte Chemie - International Edition, 2004, 43, 6032-6040.	13.8	525
5	Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chemical Communications, 2008, , 1235.	4.1	435
6	Improving enzyme properties: when are closer mutations better?. Trends in Biotechnology, 2005, 23, 231-237.	9.3	392
7	A Structural Basis for the Chiral Preferences of Lipases. Journal of the American Chemical Society, 1994, 116, 3180-3186.	13.7	328
8	Analogs of Reaction Intermediates Identify a Unique Substrate Binding Site in Candida rugosa Lipase. Biochemistry, 1994, 33, 3494-3500.	2.5	262
9	Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnology and Bioprocess Engineering, 2010, 15, 40-53.	2.6	245
10	Enhancing catalytic promiscuity for biocatalysis. Current Opinion in Chemical Biology, 2005, 9, 195-201.	6.1	242
11	How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes. ACS Catalysis, 2015, 5, 6153-6176.	11.2	216
12	Finding better protein engineering strategies. Nature Chemical Biology, 2009, 5, 526-529.	8.0	202
13	Quantitative Screening of Hydrolase Libraries Using pH Indicators: Identifying Active and Enantioselective Hydrolases. Chemistry - A European Journal, 1998, 4, 2324-2331.	3.3	191
14	A 2-Propanol Treatment Increases the Enantioselectivity of Candida rugosa Lipase toward Esters of Chiral Carboxylic Acids. Journal of Organic Chemistry, 1995, 60, 212-217.	3.2	173
15	Enantiopreference of Lipase from Pseudomonas cepacia toward Primary Alcohols. Journal of Organic Chemistry, 1995, 60, 6959-6969.	3.2	172
16	Manganese-Substituted Carbonic Anhydrase as a New Peroxidase. Chemistry - A European Journal, 2006, 12, 1587-1596.	3.3	160
17	Quick E. A Fast Spectrophotometric Method To Measure the Enantioselectivity of Hydrolases. Journal of Organic Chemistry, 1997, 62, 4560-4561.	3.2	150
18	Resolution of binaphthols and spirobiindanols using cholesterol esterase. Journal of the American Chemical Society, 1989, 111, 4953-4959.	13.7	149

#	Article	IF	CITATIONS
19	Lipase-Catalyzed Ring-Opening Polymerization of Lactones:  A Novel Route to Poly(hydroxyalkanoate)s. Macromolecules, 1996, 29, 4829-4833.	4.8	149
20	Elucidating structure-mechanism relationships in lipases: Prospects for predicting and engineering catalytic properties. Trends in Biotechnology, 1994, 12, 464-472.	9.3	137
21	Focusing Mutations into the P. fluorescens Esterase Binding Site Increases Enantioselectivity More Effectively than Distant Mutations. Chemistry and Biology, 2005, 12, 45-54.	6.0	115
22	Engineering more stable proteins. Chemical Society Reviews, 2018, 47, 9026-9045.	38.1	113
23	Magnetic separations in biotechnology. Trends in Biotechnology, 1983, 1, 144-148.	9.3	105
24	Molecular Basis for Enantioselectivity of Lipase from Pseudomonas cepacia toward Primary Alcohols. Modeling, Kinetics, and Chemical Modification of Tyr29 to Increase or Decrease Enantioselectivity. Journal of Organic Chemistry, 1999, 64, 2638-2647.	3.2	102
25	Enantiocomplementary Enzymes: Classification, Molecular Basis for Their Enantiopreference, and Prospects for Mirrorâ€Image Biotransformations. Angewandte Chemie - International Edition, 2008, 47, 8782-8793.	13.8	101
26	Mutations in Distant Residues Moderately Increase the Enantioselectivity of Pseudomonas fluorescens Esterase towards Methyl 3Bromo-2-methylpropanoate and Ethyl 3Phenylbutyrate. Chemistry - A European Journal, 2003, 9, 1933-1939.	3.3	96
27	Stereoselective Hydrogenation of Olefins Using Rhodiumâ€6ubstituted Carbonic Anhydrase—A New Reductase. Chemistry - A European Journal, 2009, 15, 1370-1376.	3.3	93
28	Protein Engineering of α/βâ€Hydrolase Fold Enzymes. ChemBioChem, 2011, 12, 1508-1517.	2.6	92
29	Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases. Journal of the American Chemical Society, 2016, 138, 1046-1056.	13.7	91
30	Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron: Asymmetry, 2001, 12, 545-556.	1.8	85
31	Receptor-Assisted Combinatorial Chemistry: Thermodynamics and Kinetics in Drug Discovery. Chemistry - A European Journal, 2005, 11, 1708-1716.	3.3	82
32	Regioselective Hydroformylation of Styrene Using Rhodiumâ€5ubstituted Carbonic Anhydrase. ChemCatChem, 2010, 2, 953-957.	3.7	81
33	Enantioselectivity of Candida Rugosa Lipase Toward Carboxylic Acids: A Predictive Rule from Substrate Mapping and X-Ray Crystallography. Biocatalysis, 1994, 9, 209-225.	0.9	77
34	A structure-based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines. Journal of Molecular Catalysis B: Enzymatic, 1997, 3, 65-72.	1.8	72
35	Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. Journal of Biotechnology, 2007, 132, 306-313.	3.8	70
36	Molecular Basis of Perhydrolase Activity in Serine Hydrolases. Angewandte Chemie - International Edition, 2005, 44, 2742-2746.	13.8	67

#	Article	IF	CITATIONS
37	Converting an Esterase into an Epoxide Hydrolase. Angewandte Chemie - International Edition, 2009, 48, 3532-3535.	13.8	67
38	Structure of an aryl esterase fromPseudomonas fluorescens. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1237-1243.	2.5	63
39	Mirror-Image Packing in Enantiomer Discrimination. Chemistry and Biology, 2005, 12, 427-437.	6.0	62
40	Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Applied Microbiology and Biotechnology, 2013, 97, 1501-1511.	3.6	62
41	Determination of absolute configuration of secondary alcohols using lipaseâ€catalyzed kinetic resolutions. Chirality, 2008, 20, 724-735.	2.6	59
42	Photochemistry of metal carbonyl alkyls. Study of thermal .betahydrogen transfer in photogenerated, 16-valence-electron alkyldicarbonylcyclopentadienylmolybdenum and -tungsten complexes. Journal of the American Chemical Society, 1982, 104, 6005-6015.	13.7	56
43	Comparison of Five Protein Engineering Strategies for Stabilizing an α/β-Hydrolase. Biochemistry, 2017, 56, 6521-6532.	2.5	56
44	Switching Catalysis from Hydrolysis to Perhydrolysis in <i>Pseudomonas fluorescens</i> Esterase [,] . Biochemistry, 2010, 49, 1931-1942.	2.5	54
45	Substrate modification to increase the enantioselectivity of hydrolases. A route to optically-active cyclic allylic alcohols Tetrahedron: Asymmetry, 1993, 4, 879-888.	1.8	53
46	[25] Enzymatic regeneration of adenosine 5′-triphosphate: Acetyl phosphate, phosphoenolpyruvate, methoxycarbonyl phosphate, dihydroxyacetone phosphate, 5-phospho-α-d-ribosyl pyrophosphate, uridine-5′-diphosphoglucose. Methods in Enzymology, 1987, 136, 263-280.	1.0	52
47	Vacuum-driven lipase-catalysed direct condensation of l-ascorbic acid and fatty acids in ionic liquids: synthesis of a natural surface active antioxidant. Green Chemistry, 2003, 5, 715.	9.0	52
48	An Inverse Substrate Orientation for the Regioselective Acylation of 3′,5′-Diaminonucleosides Catalyzed by Candida antarctica lipase B?. ChemBioChem, 2005, 6, 1381-1390.	2.6	52
49	Kinetic Resolution of Pipecolic Acid Using Partially-Purified Lipase from Aspergillus niger. Journal of Organic Chemistry, 1994, 59, 2075-2081.	3.2	51
50	`Watching' lipase-catalyzed acylations using 1H NMR: competing hydrolysis of vinyl acetate in dry organic solvents. Tetrahedron: Asymmetry, 1999, 10, 2635-2638.	1.8	50
51	Switching from an Esterase to a Hydroxynitrile Lyase Mechanism Requires Only Two Amino Acid Substitutions. Chemistry and Biology, 2010, 17, 863-871.	6.0	48
52	Photochemistry of alkyldicarbonyl(.eta.5-cyclopentadienyl)iron and -ruthenium. Ligand substitution and alkene elimination via photogenerated sixteen-valence-electron intermediates. Organometallics, 1982, 1, 602-611.	2.3	47
53	Amplification of Screening Sensitivity through Selective Destruction:Â Theory and Screening of a Library of Carbonic Anhydrase Inhibitors. Journal of the American Chemical Society, 2002, 124, 5692-5701.	13.7	47
54	Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid. Bioresource Technology, 2011, 102, 5183-5192.	9.6	47

#	Article	IF	CITATIONS
55	Subtilisin-Catalyzed Resolution ofN-Acyl Arylsulfinamides. Journal of the American Chemical Society, 2005, 127, 2104-2113.	13.7	45
56	How Substrate Solvation Contributes to the Enantioselectivity of Subtilisin toward Secondary Alcohols. Journal of the American Chemical Society, 2005, 127, 12228-12229.	13.7	44
57	Different Activeâ€Site Loop Orientation in Serine Hydrolases versus Acyltransferases. ChemBioChem, 2011, 12, 768-776.	2.6	42
58	Highly enantioselective kinetic resolution of primary alcohols of the type Ph-X-CH(CH3)-CH2OH by Pseudomonas cepacia lipase: effect of acyl chain length and solvent. Tetrahedron: Asymmetry, 2003, 14, 3917-3924.	1.8	39
59	Sequential kinetic resolution of (±)-2,3-butanediol in organic solvent using lipase from Pseudomonas cepacia Tetrahedron: Asymmetry, 1993, 4, 1995-2000.	1.8	38
60	Kinetic Resolution of Phosphines and Phosphine Oxides with Phosphorus Stereocenters by Hydrolases. Journal of Organic Chemistry, 1994, 59, 7609-7615.	3.2	38
61	Production of <i>pâ€</i> hydroxybenzoic acid from <i>pâ€</i> coumaric acid by <i>Burkholderia glumae</i> BGR1. Biotechnology and Bioengineering, 2016, 113, 1493-1503.	3.3	38
62	An optimized sequential kinetic resolution of trans-1,2-cyclohexanediol. Journal of Organic Chemistry, 1991, 56, 7251-7256.	3.2	37
63	Photogeneration of intermediates involved in catalytic cyclesbetaHydride elimination from the 16-electron alkyl species generated by irradiation of tricarbonyl(.eta.5-cyclopentadienyl)(n-pentyl)tungsten(II). Journal of the American Chemical Society, 1980, 102, 1727-1730.	13.7	36
64	Consensus Finder web tool to predict stabilizing substitutions in proteins. Methods in Enzymology, 2020, 643, 129-148.	1.0	33
65	Synthesis of methoxycarbonyl phosphate, new reagent having high phosphoryl donor potential for use in ATP cofactor regeneration. Journal of Organic Chemistry, 1985, 50, 1069-1076.	3.2	32
66	Remote Interactions Explain the Unusual Regioselectivity of Lipase from Pseudomonas cepacia toward the Secondary Hydroxyl of 2′-Deoxynucleosides. ChemBioChem, 2006, 7, 693-698.	2.6	32
67	Biosynthesis of (â^)-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion. ACS Chemical Biology, 2017, 12, 2883-2890.	3.4	31
68	Empirical rules for the enantiopreference of lipase from Aspergillus niger toward secondary alcohols and carboxylic acids, especially α-amino acids. Tetrahedron: Asymmetry, 1997, 8, 3719-3733.	1.8	30
69	Pseudodynamic Combinatorial Libraries: A Receptor-Assisted Approach for Drug Discovery. Angewandte Chemie - International Edition, 2004, 43, 2432-2436.	13.8	30
70	Increased Saccharification Yields from Aspen Biomass Upon Treatment with Enzymatically Generated Peracetic Acid. Applied Biochemistry and Biotechnology, 2010, 160, 1637-1652.	2.9	30
71	Deep Eutectic Solvents for <i>Candida antarctica</i> Lipase B-Catalyzed Reactions. ACS Symposium Series, 2010, , 169-180.	0.5	29
72	Protease-Mediated Separation of Cis and Trans Diastereomers of 2(R,S)-benzyloxymethyl-4(S)-carboxylic Acid 1,3-Dioxolane Methyl Ester:Â Intermediates for the Synthesis of Dioxolane Nucleosides. Journal of Organic Chemistry, 1999, 64, 9019-9029.	3.2	28

#	Article	IF	CITATIONS
73	Application of rapid-scan Fourier transform infrared spectroscopy to characterize the monodentate intermediate in the photochemical formation of tetracarbonyl(4,4'-dialkyl-2,2'-bipyridine)metal from hexacarbonylmetal. Journal of the American Chemical Society, 1982, 104, 5784-5786.	13.7	27
74	One-step pretreatment of yellow poplar biomass using peracetic acid to enhance enzymatic digestibility. Scientific Reports, 2017, 7, 12216.	3.3	25
75	Photochemistry of solution and surface-confined alkyl- and benzyltricarbonylcyclopentadienyltungsten complexes. Organometallics, 1982, 1, 1338-1350.	2.3	24
76	Isolation of racemic 2,4-pentanediol and 2,5-hexanediol from commercial mixtures of racemic and meso isomers by way of cyclic sulfites Tetrahedron: Asymmetry, 1994, 5, 657-664.	1.8	24
77	Improving hydrolases for organic synthesis. Current Opinion in Chemical Biology, 1998, 2, 121-126.	6.1	24
78	Molecular Basis of Chiral Acid Recognition by <i>Candida rugosa</i> Lipase: Xâ€Ray Structure of Transition State Analog and Modeling of the Hydrolysis of Methyl 2â€Methoxyâ€2â€phenylacetate. Advanced Synthesis and Catalysis, 2011, 353, 2529-2544.	4.3	23
79	Kinetic resolution of sulfoxides with pendant acetoxy groups using cholesterol esterase: substrate mapping and an empirical rule for chiral phenols. Canadian Journal of Chemistry, 1995, 73, 1357-1367.	1.1	21
80	Mapping the substrate selectivity and enantioselectivity of esterases from thermophiles. Tetrahedron: Asymmetry, 2004, 15, 2991-3004.	1.8	20
81	Revised Molecular Basis of the Promiscuous Carboxylic Acid Perhydrolase Activity in Serine Hydrolases. Chemistry - A European Journal, 2012, 18, 8130-8139.	3.3	20
82	lonic Liquids Create New Opportunities for Nonaqueous Biocatalysis with Polar Substrates: Acylation of Glucose and Ascorbic Acid. ACS Symposium Series, 2003, , 225-238.	0.5	19
83	Evolution of a Catalytic Mechanism. Molecular Biology and Evolution, 2016, 33, 971-979.	8.9	19
84	Changing coenzymes improves oxidations catalyzed by alcohol dehydrogenase. Journal of Organic Chemistry, 1988, 53, 4633-4635.	3.2	18
85	Kinetic resolutions concentrate the minor enantiomer and aid measurement of high enantiomeric purity Tetrahedron: Asymmetry, 1994, 5, 83-92.	1.8	18
86	Molecular Basis for Enantioselectivity of Lipase fromChromobacteriumviscosumtoward the Diesters of 2,3-Dihydro-3-(4â€~-hydroxyphenyl)-1,1,3-trimethyl-1H-inden-5-ol. Journal of Organic Chemistry, 2001, 66, 3041-3048.	3.2	18
87	Molecular Basis for the Stereoselective Ammoniolysis of <i>N</i> â€Alkyl Aziridineâ€2â€Carboxylates Catalyzed by <i>Candida antarctica</i> Lipase B. ChemBioChem, 2009, 10, 2213-2222.	2.6	18
88	Survey of Protein Engineering Strategies. Current Protocols in Protein Science, 2011, 66, Unit26.7.	2.8	17
89	Stabilization of an α/β-Hydrolase by Introducing Proline Residues: Salicylic Acid Binding Protein 2 from Tobacco. Biochemistry, 2015, 54, 4330-4341.	2.5	17
90	First Preparation of Enantiopure Indane Monomer, (S)-(â^')- and (R)-(+)-2,3-dihydro-3- (4â€ [~] -hydroxyphenyl)-1,1,3-trimethyl-1H-inden-5-ol, via a Unique Enantio- and Regioselective Enzymatic Kinetic Resolution. Journal of Organic Chemistry, 1999, 64, 7498-7503.	3.2	16

#	Article	IF	CITATIONS
91	Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase. Chemical Science, 2014, 5, 4265-4277.	7.4	16
92	Improved pretreatment of yellow poplar biomass using hot compressed water and enzymatically-generated peracetic acid. Biomass and Bioenergy, 2017, 105, 190-196.	5.7	15
93	Increasing the Reaction Rate of Hydroxynitrile Lyase from <i>Hevea brasiliensis</i> toward Mandelonitrile by Copying Active Site Residues from an Esterase that Accepts Aromatic Esters. ChemBioChem, 2014, 15, 1931-1938.	2.6	14
94	Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility. Biotechnology and Bioprocess Engineering, 2017, 22, 405-412.	2.6	14
95	Enantiocomplementary Enzymatic Resolution of the Chiral Auxiliary: cis,cis-6-(2,2-Dimethylpropanamido)spiro[4.4]nonan-1-ol and the Molecular Basis for the High Enantioselectivity of Subtilisin Carlsberg. ChemBioChem, 2004, 5, 980-987.	2.6	13
96	Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity. PLoS ONE, 2020, 15, e0235341.	2.5	13
97	The 3-(3-Pyridine)propionyl Anchor Group for Protease-Catalyzed Resolutions:p-Toluenesulfinamide and Sterically Hindered Secondary Alcohols. Advanced Synthesis and Catalysis, 2006, 348, 1183-1192.	4.3	10
98	Plasmid hypermutation using a targeted artificial DNA replisome. Science Advances, 2021, 7, .	10.3	10
99	Manganese-Substituted α-Carbonic Anhydrase as an Enantioselective Peroxidase. Topics in Organometallic Chemistry, 2009, , 45-61.	0.7	10
100	Identical Active Sites in Hydroxynitrile Lyases Show Opposite Enantioselectivity and Reveal Possible Ancestral Mechanism. ACS Catalysis, 2017, 7, 4221-4229.	11.2	9
101	Calibration plots to aid determination of high enantiomeric purity using chiral lanthanide shift reagents Tetrahedron: Asymmetry, 1992, 3, 243-246.	1.8	8
102	High-Level Production of Lysine in the Yeast Saccharomyces cerevisiae by Rational Design of Homocitrate Synthase. Applied and Environmental Microbiology, 2021, 87, e0060021.	3.1	8
103	Parallel synthesis of an ester library for substrate mapping of esterases and lipases. Tetrahedron: Asymmetry, 2004, 15, 3005-3009.	1.8	7
104	Quantitative Assay of Hydrolases for Activity and Selectivity Using Color Changes. , 2006, , 15-39.		7
105	Ten years of green chemistry at the Gordon Research Conferences: frontiers of science. Green Chemistry, 2006, 8, 677.	9.0	6
106	New Structural Motif for Carboxylic Acid Perhydrolases. Chemistry - A European Journal, 2013, 19, 3037-3046.	3.3	5
107	The road to L. Nature Chemistry, 2015, 7, 11-12.	13.6	4
108	Developmental evolution facilitates rapid adaptation. Scientific Reports, 2017, 7, 15891.	3.3	4

#	Article	IF	CITATIONS
109	The Fungus <i>Trichoderma</i> Regulates Submerged Conidiation Using the Steroid Pregnenolone. ACS Chemical Biology, 2016, 11, 2568-2575.	3.4	3
110	Improving Pseudomonas fluorescens esterase for hydrolysis of lactones. Catalysis Science and Technology, 2017, 7, 4756-4765.	4.1	3
111	Evolutionary innovation using EDGE, a system for localized elevated mutagenesis. PLoS ONE, 2020, 15, e0232330.	2.5	3
112	Experimental Evolution of Trichoderma citrinoviride for Faster Deconstruction of Cellulose. PLoS ONE, 2016, 11, e0147024.	2.5	3
113	Enzymatic Enantioselective antiâ€Markovnikov Hydration of Aryl Alkenes. Angewandte Chemie - International Edition, 0, , .	13.8	3
114	Enzymatic Enantioselective antiâ€Markovnikov Hydration of Aryl Alkenes. Angewandte Chemie, 2022, 134,	2.0	3
115	Molecular Basis for the Enantio―and Diastereoselectivity of <i>Burkholderia cepacia</i> Lipase toward γâ€Butyrolactone Primary Alcohols. Advanced Synthesis and Catalysis, 2014, 356, 3585-3599.	4.3	2
116	Hydrolysis and Formation of Carboxylic Acid and Alcohol Derivatives. , 2016, , 127-148.		2
117	Synthesis of an acylphosphate driven by a proton gradient. A model for H+-ATPase. Journal of Organic Chemistry, 1992, 57, 7005-7006.	3.2	1
118	Dicarboxylic Acids Link Proton Transfer Across a Liquid Membrane to the Synthesis of Acyl Phosphates. A Model for P-Type H+-ATPases. Journal of Organic Chemistry, 1994, 59, 3626-3635.	3.2	1
119	Choosing Hydrolases for Enantioselective Reactions Involving Alcohols Using Empirical Rules. , 2001, , 243-259.		1
120	Biology Evolves to Fight Chemistry. Chemistry and Biology, 2012, 19, 435-437.	6.0	1
121	Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to Form New Bonds and Follow New Pathways. ChemInform, 2005, 36, no.	0.0	0
122	Inside Cover: Molecular Basis for the Stereoselective Ammoniolysis ofN-Alkyl Aziridine-2-Carboxylates Catalyzed byCandida antarcticaLipase B (ChemBioChem 13/2009). ChemBioChem, 2009, 10, 2122-2122.	2.6	0
123	Inside Cover: Different Active-Site Loop Orientation in Serine Hydrolases versus Acyltransferases (ChemBioChem 5/2011). ChemBioChem, 2011, 12, 654-654.	2.6	0
124	Enzymes working in reverse. Nature Catalysis, 2018, 1, 172-173.	34.4	0
125	Molecular Basis for Empirical Rules that Predict the Stereoselectivity of Hydrolases. NATO Science Series Partnership Sub-series 1, Disarmament Technologies, 2000, , 43-69.	0.1	0
126	Resolution of Binaphthols and Spirobiindanols Using Pancreas Extracts. , 1990, , 195-216.		0