Pan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4104903/publications.pdf

Version: 2024-02-01

933447 1058476 15 647 10 14 citations h-index g-index papers 15 15 15 873 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	The Arabidopsis UDPâ€glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal, 2017, 89, 85-103.	5.7	355
2	Ectopic expression of UCT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana. Plant Molecular Biology, 2016, 90, 77-93.	3.9	62
3	The <i>Arabidopsis</i> <scp>UGT87A2</scp> , a stressâ€inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses. Physiologia Plantarum, 2017, 159, 416-432.	5.2	50
4	The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses. Annals of Botany, 2018, 122, 1203-1217.	2.9	36
5	A High Capacity Aluminum″on Battery Based on Imidazole Hydrochloride Electrolyte. ChemElectroChem, 2019, 6, 3350-3354.	3.4	24
6	Porous αâ€MnSe Microsphere Cathode Material for Highâ€Performance Aluminum Batteries. ChemElectroChem, 2019, 6, 4437-4443.	3.4	20
7	First-principles investigations on structural stability, elastic and electronic properties of Co ₇ M ₆ (M= W, Mo, Nb) µ phases. Molecular Simulation, 2019, 45, 752-758.	2.0	20
8	Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis. Plant Cell Reports, 2017, 36, 1995-2006.	5.6	18
9	High-performance aluminum-ion batteries based on AlCl ₃ /caprolactam electrolytes. Sustainable Energy and Fuels, 2020, 4, 121-127.	4.9	18
10	Atomistic mechanism of phase transformation between topologically close-packed complex intermetallics. Nature Communications, 2022, 13, 2487.	12.8	15
11	Natural Template-Derived 3D Porous Current Collector for Dendrite-free Lithium Metal Battery. Nano, 2020, 15, 2050033.	1.0	9
12	Novel Ni–Fe‣ayered Double Hydroxide Microspheres with Reduced Graphene Oxide for Rechargeable Aluminum Batteries. Energy Technology, 2019, 7, 1900649.	3.8	8
13	Rechargeable Highâ€Capacity Aluminumâ€Nickel Batteries. ChemistrySelect, 2019, 4, 13191-13197.	1.5	8
14	Predicting shape memory characteristics of polyurethane in three-point bending deformation. Polymers for Advanced Technologies, 2014, 25, 1130-1134.	3.2	4
15	Effects of Pressure on the Structural, Mechanical, and Electronic Properties and Debye Temperature of Pdâ∈Based Alloy: Firstâ∈Principles Calculation. Physica Status Solidi (B): Basic Research, 2021, 258, 2000490.	1.5	0